Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents
2.3. Collection of Hair and Nail Samples
2.4. Cleaning Human Hair Procedure
2.5. Cleaning Nails Procedure
2.6. Digestion Human Hair Samples Procedure
2.7. Digestion Nails Samples Procedure
2.8. Analytical Procedures
2.9. Response Optimization with Palladium Matrix Modifier
Cluster Analysis
2.10. Validation of Analytical Method
2.11. Study Area
3. Results and Discussion
3.1. Optimization from Response Using Matrix Modifier
3.2. Linearity
Precision, Repeatability, and Reproducibility
3.3. Accuracy
3.4. LOD and LOQ
3.5. Measurement Uncertainty
3.6. Analysis of Real Samples: Hair and Nails
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.Q.; Kazi, T.G.; Baig, J.A.; Arain, M.B.; Afridi, H.I.; Kandhro, G.A.; Wadhwa, S.K.; Kolachi, N.F. Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry (ETAAS). Food Chem. 2010, 119, 840–844. [Google Scholar] [CrossRef]
- Ogunfowokan, A.O.; Adekunle, A.S.; Oyebode, B.A.; Oyekunle, J.A.O.; Komolafe, A.O.; Omoniyi-Esan, G.O. Determination of Heavy Metals in Urine of Patients and Tissue of Corpses by Atomic Absorption SpeBirchctroscopy. Chem. Afr. 2019, 2, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Fatema, K.; Naher, K.; Choudhury, T.R.; Islam, M.A.; Tamim, U.; Hossain, S.M.; Islam, S.M.A.; Ali, M.P. Determination of Toxic Metal Accumulation in Shrimps by Atomic Absorption Spectrometry (AAS). J. Environ. Anal. Chem. 2015, 2, 2380–2391. [Google Scholar]
- Afridi, H.I.; Kazi, T.G.; Jamali, M.K.; Kazi, G.H.; Arain, M.B.; Jalbani, N.; Kazi, G.H.; Arain, M.B.; Jalbani, N.; Shar, G.Q.; et al. Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol. Ind. Health 2006, 22, 381–393. [Google Scholar] [CrossRef]
- Lotah, H.N.A.; Agarwal, A.K.; Khanam, R. Heavy metals in hair and nails as markers of occupational hazard among welders working in United Arab Emirates. Toxicol. Res. 2022, 38, 63–68. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/EP (accessed on 13 May 2022).
- De Paula, C.E.R.; Cruz, G.F.B.; Rezende, C.M.S.P.; Cassella, R.J. Determination of Cr and Mn in moisturizing creams by graphite furnace atomic absorption spectrometry through direct introduction of the samples in the form of emulsions. Microchem. J. 2016, 12, 1–6. [Google Scholar] [CrossRef]
- Dos Santos, N.R.; Rodrigues, J.L.; Bandeira, M.J.; Anjos, A.L.D.S.; Cecília de Freitas, S.A.; Adan, L.F.F.; Menezes-Filho, J.A. Manganese exposure and association with hormone imbalance in children living near a ferro-manganese alloy plant. Environ. Res. 2019, 172, 166–174. [Google Scholar] [CrossRef]
- Koseoglu, E.; Koseoglu, R.; Kendirci, M.; Saraymen, R.; Saraymen, B. Trace metal concentrations in hair and nails from Alzheimer’s disease patients: Relations with clinical severity. J. Trace Elem. Med. Biol. 2017, 39, 124–128. [Google Scholar] [CrossRef]
- Kilic, E.; Saraymen, R.; Demiroglu, A.; Ok, E. Chromium and manganese levels in the scalp hair of normals and patients with breast cancer. Biol. Trace Elem. Res. 2004, 102, 19–25. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Jamali, M.K.; Kazi, G.H.; Arain, M.B.; Jalbani, N.; Shar, G.Q. Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc. Lett. 2006, 39, 203–214. [Google Scholar] [CrossRef]
- Martin, K.V.; Sucharew, H.; Dietrich, K.N.; Parsons, P.J.; Palmer, C.D.; Wright, R.; Amarasiriwardena, C.; Smith, D.R.; Haynes, E.N. Co-exposure to manganese and lead and pediatric neurocognition in East Liverpool, Ohio. Environ. Res. 2021, 202, 111644. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.; Castaño, A. Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009, 35, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-González, E.; García-Esquinas, E.; Larrea-Baz, N.; Salcedo-Bellido, I.; Navas-Acien, A.; Lope, V.; Gómez-Ariza, J.; Pstor, R.; Pollán, M.; Pérez-Gómez, B. Toenails as biomarker of exposure to essential trace metals: A review. Environ. Res. 2019, 179, 108787. [Google Scholar] [CrossRef]
- Barton, H.J. Advantages of the use of deciduous teeth, hair, and blood analysis for lead and cadmium bio-monitoring in children. A study of 6-year-old children from Krakow (Poland). Biol. Trace Elem. Res. 2011, 143, 637–658. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.; Costa, E.A.C.; Freitas, M.A.S.; Freire, B.M.; Batista, B.L.; Luz, M.S.; Olympio, K.P.K. The applicability of fingernail lead and cadmium levels as subchronic exposure biomarkers for preschool children. Sci. Total Environ. 2021, 758, 143583. [Google Scholar] [CrossRef]
- Slotnick, M.J.; Nriagu, J.O. Validity of human nails as a biomarker of arsenic and selenium exposure: A review. Environ. Res. 2006, 102, 125–139. [Google Scholar] [CrossRef]
- Salcedo-Bellido, I.; Gutiérrez-González, E.; García-Esquinas, E.; Larrea-Baz, N.; Navas-Acien, A.; Téllez-Plaza, M.; Pastor-Barriuso, R.; Lope, V.; Gómez-Ariza, J.; García-Barrera, T.; et al. Toxic metals in toenails as biomarkers of exposure: A review. Environ. Res. 2021, 197, 111028. [Google Scholar] [CrossRef]
- Momen, A.A.; Khalid, M.A.A.; Elsheikh, M.A.A.; Ali, D.M.H. Trace elements in scalp hair and fingernails as biomarkers in clinical studies. J. Health Spec. 2015, 3, 28–34. [Google Scholar]
- Aziz, M.Y.; Hussain, S.H.; Ishak, A.R.; Abdullah, M.A.; Mohamed, R.; Ruzi, I.I.; Yahaya, N.; Samad, N.A.; Edinur, H.A. Heavy Metal Concentrations in Malaysian Adults’ Hair and Associated Variables in Bukit Mertajam, Penang, Malaysia. Biol. Trace Elem. Res. 2021, 200, 3475–3481. [Google Scholar] [CrossRef]
- Lakshmi-Priya, M.D.; Geetha, A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 2011, 142, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lemos, V.A.; De Carvalho, A.L. Determination of cadmium and lead in human biological samples by spectrometric techniques: A review. Environ. Monit. Assess. 2010, 171, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.L.; Rodrigues, J.L.; Nunes, J.A.; Tormen, L.; Curtius, A.J.; Barbosa, F. Simultaneous determination of Cd, Cu, Mn, Ni, Pb and Zn in nail samples by inductively coupled plasma mass spectrometry (ICP-MS) after tetramethylammonium hydroxide solubilization at room temperature: Comparison with ETAAS. Talanta 2008, 76, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Goullé, J.P.; Saussereau, E.; Mahieu, L.; Bouige, D.; Groenwont, S.; Guerbet, M.; Lacroix, C. Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. J. Anal. Toxicol. 2009, 33, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Baysal, A.; Akman, S. Determination of lead in hair and its segmental analysis by solid sampling electrothermal atomic absorption spectrometry. Spectrochim. Acta-Part B At. Spectrosc. 2010, 65, 340–344. [Google Scholar] [CrossRef]
- Olmedo, P.; Pla, A.; Hernández, A.F.; López-Guarnido, O.; Rodrigo, L.; Gil, F. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal. Chim. Acta 2010, 659, 60–67. [Google Scholar] [CrossRef]
- MacQueen, J.E.F. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Lecam, L., Neyman, J., Eds.; University of California: Los Angeles, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline. Validation of Analytucal Procedures: Text and Methodology Q2(R1); ICH: San Diego, CA, USA, 2014. [Google Scholar]
- The Commission of the European Communities. Commission decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 1, 29. [Google Scholar]
- Perelonia, K.B.S.; Benitez, K.C.D.; Banicod, R.J.S.; Tadifa, G.C.; Cambia, F.D.; Montojo, U.M. Validation of an analytical method for the determination of cadmium, lead and mercury in fish and fishery resources by graphite furnace and Cold Vapor Atomic Absorption Spectrometry. Food Control 2021, 130, 108363. [Google Scholar] [CrossRef]
- Duqino Rojas, L.G. Bogota: Urban, socioeconomic and environmental evolution between 1920 and 2010. Perspect. Geográfica 2013, 18, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Descripción de Bogotá, D.C. Available online: https://bogota.gov.co/mi-ciudad (accessed on 1 June 2022).
- Censo Nacional de Población y Vivienda 2018, datos Bogotá D.C. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 (accessed on 1 June 2022).
- The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics. Available online: https://eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 3 June 2022).
- Rodrigues, J.L.; Bandeira, M.J.; Araújo, C.F.; Dos Santos, N.R.; Anjos, A.L.S.; Koin, N.L.; Pereira, L.C.; Oliveira, S.; Mergler, D.; Menezes-Filho, J.A. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ. Pollut. 2018, 236, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Ellison, S.L.; Williams, A. Quantifying Uncertainty in Analytical Measurement, 30th ed.; EURACHEM: London, UK, 2012; pp. 1–141. Available online: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf (accessed on 3 June 2022).
- Dadolahi-Sohrab, A.; Mohammad, S.; Nabavi, B.; Safahieh, A. Environmental monitoring of heavy metals in seaweed and associated sediment from the Strait of Hormuz, IR Iran. WJFMS 2011, 3, 576–589. [Google Scholar]
- Ungureanu, E.L.; Mustatea, G. Toxicity of heavy metals. In Environmental Impact and Remediation of Heavy Metals; Saleh, H., Hassan, A.I., Eds.; IntechOpen: Rijeka, Croatia, 2022; Volume 1. [Google Scholar]
- Sukumar, A.; Subramanian, R. Relative element levels in the paired samples of scalp hair and fingernails of patients from New Delhi. Sci. Total Environ. 2007, 372, 474–479. [Google Scholar] [CrossRef]
- Diab, H.M.; Alkahtani, M.A.; Ahmed, A.S.; Khalil, A.M.; Alshehri, M.A.; Ahmed, M.A.; Rehan, I.F.; Elmansi, A.A.; Ahmend, A.E. Coexistence of diverse heavy metal pollution magnitudes: Health risk assessment of affected cattle and human population in some rural regions, Qena, Egypt. J. Adv. Vet. Anim. Res. 2020, 7, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Bautista, F.; Delgado, C.; Gogichaichvili, A.; Cejudo, R.; Gutierréz-ruiz, M.E.; Ceniceros-Gómez, A.E.; López-Santiago, N.R. Spatial Analysis of Lead in the Street Dust of Mexico City: Implications for Human Health. J. Environ. Sci. Public Health 2019, 3, 210–225. [Google Scholar]
- Vormittag, E.; Saldiva, P.; Anastacio, A.; Barbosa, F., Jr. High levels of metals/metalloids in blood and urine of residents living in the area affected by the dam failing in Barra Longa, District, Brazil: A preliminary human biomonitoring study. Environ. Toxicol. Pharmacol. 2021, 83, 103566. [Google Scholar] [CrossRef]
- Gutiérrez-Ruiz, M.; Parrot, J.F.; Ramírez-Núñez, C.; Pérez-Manzanera, L.; Amaro-Ramírez, D.; Jardines-Mendoza, L. Tridimensional spatial distribution of manganese in a river impacted by metallurgical activity and mining. Environ. Sci. Pollut. Res. 2021, 28, 3494–3505. [Google Scholar] [CrossRef]
Parameter | Settings | |
---|---|---|
Mn | Pb | |
Lamp current (mA) | 10 mA/600 mA | 8 mA/300 mA |
Lamp mode | BGC-D2 | BGC-SR |
Slit width (nm) | 0.2 nm | 0.5 nm |
Wavelength (nm) | 279.5 nm | 283.3 nm |
Metal | Temperature (°C)-Ramp | ||
---|---|---|---|
Ashing | Atomization | Cleaning Out | |
Mn | 800/10-3 | 2200/0-3 | 2500 |
Pb | 700/10-3 | 2000/0-3 | 2500 |
ANOVA | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | Sig. | ||
PB_C_PEND | Between Groups | 0.000 | 3 | 0.000 | 26,909 | 0.000 |
Within Groups | 0.000 | 32 | 0.000 | |||
Total | 0.000 | 35 | ||||
PB_C_Y | Between Groups | 0.065 | 3 | 0.022 | 886,905 | 0.000 |
Within Groups | 0.001 | 32 | 0.000 | |||
Total | 0.066 | 35 |
Matrix | Metal | Linear Range (µg·L−1) | Slope | Intercept | R2 |
---|---|---|---|---|---|
Hair a | Mn | 0.001–0.015 | 0.0578 | 0.998 | |
Pb | 0.002–0.020 | 0.0114 | 0.996 | ||
Nails b | Mn | 0.001–0.015 | 0.0756 | 0.999 | |
Pb | 0.002–0.020 | 0.0071 | 0.998 |
Matrix | Metal | Analyte Concentration µg·g−1 | Analyte Concentration µg·g−1 | Precision (%RSD) | Uncertainty (%) | |
---|---|---|---|---|---|---|
Repeatability | Reproducibility | |||||
Hair a | Mn | 0.625 | 0.657 ± 0.0127 | 2.65 | 9.88 | 9.93 |
Pb | 0.625 | 0.626 ± 0.1241 | 6.66 | 12.97 | 6.59 | |
Nails b | Mn | 1.25 | 1.288 ± 0.0626 | 6.65 | 6.39 | 8.63 |
Pb | 1.25 | 1.243 ± 0.0438 | 4.82 | 6.7 | 4.59 |
Matrix | Metal | Fortified Concentration (µg·g−1) | Concentration Recovery (µg·g−1) | Average Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Hair a | Mn | 0.125 | 0.118 | 94.21 ± 9.95 | 14.46 |
0.625 | 0.630 | 99.24 ± 8.62 | 11.89 | ||
1.875 | 1.590 | 84.8 ± 2.31 | 3.74 | ||
Pb | 0.250 | 0.257 | 102.86 ± 7.53 | 7.32 | |
1.250 | 1.276 | 102.12 ± 3.16 | 3.10 | ||
2.500 | 2.429 | 97.14 ± 7.47 | 7.69 | ||
Nails b | Mn | 0.250 | 0.270 | 107.98 ± 10.33 | 13.11 |
1.250 | 1.213 | 97.04 ± 5.80 | 8.17 | ||
3.750 | 3.788 | 101.02 ± 10.15 | 13.77 | ||
Pb | 0.500 | 0.434 | 86.72 ± 5.01 | 7.91 | |
2.500 | 2.394 | 94.97 ± 4.48 | 6.46 | ||
5.000 | 4.880 | 97.61 ± 2.17 | 3.05 |
Matrix | Mn | Pb | ||
---|---|---|---|---|
LOD µg·g−1 | LOQ µg·g−1 | LOD µg·g−1 | LOQ µg·g−1 | |
Human Hair | 0.0486 | 0.0616 | 0.0318 | 0.0335 |
Nails | 0.0844 | 0.1381 | 0.0420 | 0.0554 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forero-Mendieta, J.R.; Varón-Calderón, J.D.; Varela-Martínez, D.A.; Riaño-Herrera, D.A.; Acosta-Velásquez, R.D.; Benavides-Piracón, J.A. Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry. Separations 2022, 9, 158. https://doi.org/10.3390/separations9070158
Forero-Mendieta JR, Varón-Calderón JD, Varela-Martínez DA, Riaño-Herrera DA, Acosta-Velásquez RD, Benavides-Piracón JA. Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry. Separations. 2022; 9(7):158. https://doi.org/10.3390/separations9070158
Chicago/Turabian StyleForero-Mendieta, José Ricardo, Juan David Varón-Calderón, Diana Angelica Varela-Martínez, Diego Alejandro Riaño-Herrera, Rubén Darío Acosta-Velásquez, and John Alexander Benavides-Piracón. 2022. "Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry" Separations 9, no. 7: 158. https://doi.org/10.3390/separations9070158
APA StyleForero-Mendieta, J. R., Varón-Calderón, J. D., Varela-Martínez, D. A., Riaño-Herrera, D. A., Acosta-Velásquez, R. D., & Benavides-Piracón, J. A. (2022). Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry. Separations, 9(7), 158. https://doi.org/10.3390/separations9070158