Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Chemicals and Reagents
3.3. SC-CO2 Extraction
3.4. Liquid Chromatography
3.5. Mass Spectrometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
№ | Class of Compounds | Identified Compounds | Formula | Mass | Molecular ion [M-H]- | Molecular ion [M+H]+ | 2 fragmentation MS/MS | 3 Fragmentation MS/MS | 4 Fragmentation MS/MS | References |
---|---|---|---|---|---|---|---|---|---|---|
POLYPHENOLS | ||||||||||
1 | Flavonol | Kaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * | C15H10O6 | 286.24 | 287 | 258; 241; 187; 137 | 229; 213; 153 | 203; 132 | Rhus coriaria [23]; Andean blueberry [24]; Potato leaves [25]; Impatients glandulifera Royle [26]; Rapeseed petals [27]; Rh. sichotense [28] | |
2 | Flavonol | Kaempferide [4’-O-Methylkaempferol] * | C16H12O6 | 300.2629 | 301 | 286 | 258 | 229; 201; 153 | Spondias purpurea [29]; Ocimum [30]; Alpinia officinarum [31]; Brazilian propolis [32] | |
3 | Flavonol | Herbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * | C15H10O7 | 302.2357 | 303 | 275; 202; 185; 157 | 175; 157 | Ocimum [30]; Rhodiola rosea [33] | ||
4 | Flavonol | Dihydroquercetin [Taxifolin; Taxifoliol] * | C15H12O7 | 304.25 | 303 | 285 | 267; 241; 215; 135 | 171 | Andean blueberry [24]; millet grains [34]; Camellia kucha [35]; Rosa rugosa [36] | |
5 | Flavonol | Myricetin [3,5,7-Trihydroxy-2-(3,4,5-Trihydroxyphenyl)-4H-Chromen-4-One] * | C15H10O8 | 318.2351 | 319 | 289; 261; 239; 219; 191; 173 | 261; 243; 214; 191; 173; 159 | 233; 215; 191; 161; 143 | Sanguisorba officinalis [20]; Andean blueberry [24]; millet grains [34]; Rosa rugosa [36]; Vaccinium macrocarpon [37] | |
6 | Flavonol | Kaempferol 7-sulphate * | C15H10O9S | 366.2995 | 365 | 285 | 241; 199; 151 | 197; 171; 143 | F. pulverulenta Frankeniaceae [12] | |
7 | Flavonol | Isorhamnetin 3-sulphate * | C16H10O10S | 394.3096 | 393 | 313 | 298 | 269 | Senecio galicus Asteraceae; Polygonium hydropiper Polygoniaceae [12] | |
8 | Flavonol | Kaempferol-7-O-α-L-rhamnoside * | C21H20O10 | 432.3775 | 431 | 257 | 227; 157 | 215; 145 | Rhodiola crenulata [38]; Rhodiola sachalinensis [39] | |
9 | Flavonol | Aromadendrin 7-O-rhamnoside * | C21H22O10 | 434.3934 | 433 | 259; 229 | 227; 199; 157 | 215; 199 | Eucalyptus [40] | |
10 | Flavonol | Quercitrin [Quercetin 3-L- rhamnoside; Quercetrin] * | C21H20O11 | 448.3769 | 449 | 303; 203 | 203 | 185 | Rhus coriaria [23]; Camellia kucha [35]; Vaccinium macrocarpon [37,41]; Propolis [42] | |
11 | Flavonol | Astragalin [Kaempferol 3-O-glucoside; Kaempferol-3-Beta-Monoglucoside; Astragaline] * | C21H20O11 | 448.3769 | 449 | 287; 367 | 153; 240 | Actinidia chinensis [21]; Rapeseed petals [27]; Spondias purpurea [29]; Camellia kucha [35]; Lonicera japonicum [43] | ||
12 | Flavonol | Kaempferol 3-(6’’-malonylglucoside) * | C24H22O14 | 534.4231 | 535 | 449; 287 | 263; 219; 153 | A. cordifolia [9]; Impatients glandulifera Royle [26]; Mexican lupine species [44] | ||
13 | Flavonol | Herbacetin-3-O-glucoside-7-O-xylo/ara * | C26H28O16 | 596.4909 | 597 | 436 | 389; 327; 240; 221; 194 | 194; 150 | Rhodiola rosea [45] | |
14 | Flavone | Luteolin | C15H10O6 | 286.2363 | 287 | 152; 241; 187 | Zostera marina [11]; Propolis [42]; Lonicera japonicum [43]; Dracocephalum palmatum [46] | |||
15 | Flavone | Diosmetin | C16H12O6 | 300.2629 | 299 | 283; 256 | Andean blueberry [24]; Lonicera japonicum [43]; Cirsium japonicum [47]; Mentha [48] | |||
16 | Flavone | Chrysoeriol [Chryseriol] | C16H12O6 | 300.2629 | 301 | 286; 244; 203 | 258 | 229 | Rhus coriaria [23]; Mexican lupine species [44]; Dracocephalum palmatum [46]; Mentha [48] | |
17 | Flavone | Dihydroxy-dimethoxy(iso)flavone * | C17H14O6 | 314.2895 | 315 | 299; 271; 215; 169 | 297; 271; 253; 229; 186 | 269; 253; 145 | Propolis [42]; Rosmarinus officinalis [49]; Astragali radix [50] | |
18 | Flavone | Cirsimaritin * | C17H14O6 | 314.2895 | 315 | 299; 282; 254 | 254 | 226; 197; 181; 169; 153 | Ocimum [30]; Rosmarinus officinalis [49] | |
19 | Flavone | Cirsiliol * | C17H14O7 | 330.2889 | 331 | 298; 203 | 270 | 241 | Ocimum [30] | |
20 | Flavone | Jaceosidin [5,7,4’-trihydroxy-6’,5’-dimetoxyflavone] * | C17H14O7 | 330.2889 | 331 | 303; 285; 257; 231 | 203; 184; 157 | 185; 157; 127 | Mentha [48,51] | |
21 | Flavone | 5,6,4’-Trihydroxy-7,8-dimetoxyflavone * | C17H14O7 | 330.2889 | 331 | 303; 257; 221; 203 | 275; 221; 203 | 245; 175; 143 | F. glaucescens; F. herrerae [9]; Mentha [48] | |
22 | Flavone | Syringetin * | C17H14O8 | 346.2883 | 347 | 318; 291; 247; 219 | 291; 261; 219 | 273; 261; 243; 191 | C. edulis [9] | |
23 | Flavone | Apigenin 7-sulfate | C15H10O8S | 350.3001 | 349 | 269 | 225; 197; 159 | 197 | Zostera marina [11]; G. linguiforme [9]; sulphates [12] | |
24 | Flavone | Hydroxy-tetramethoxy(iso) flavone * | C19H18O7 | 358.342 | 359 | 315 | 256; 190 | Propolis [42] | ||
25 | Flavone | Luteolin 7-sulphate | C15H10O9S | 366.2995 | 367 | 287 | 153; 259; 241; 219; 199; 179 | 123 | Zostera marina [10,11] | |
26 | Flavone | Chrysoeriol-7-sulphate | C16H12O9S | 380.3261 | 381 | 301; | 286 | 258 | Zostera marina [10] | |
27 | Flavone | Diosmetin-7-sulphate | C16H12O9S | 380.3261 | 379 | 299 | 284 | Zostera marina [10,11] | ||
28 | Flavone | Luteolin 7-O-glucoside [Cynaroside; Luteoloside] | C21H20O11 | 448.3769 | 449 | 287 | 213; 137 | 185 | Zostera marina [10]; millet grains [34]; Propolis [42]; Mexican lupine species [44]; Mentha [51]; Thymus vulgaris [52] | |
29 | Flavone | Linarin [Acaciin; Buddleoside; Acacetin-7-O-Rutinoside; Linarigenin Glycoside] * | C28H32O14 | 592.5453 | 593 | 575; 377; 197 | 377 | 197 | Dracocephalum palmatum [46]; Mentha [48,51,53] | |
30 | Flavone | Apigenin 6-C-[6”-acetyl-2”-O-deoxyhexoside]-glucoside * | C29H32O15 | 620.5554 | 621 | 561 | 461 | 433 | Passiflora incarnata [54] | |
31 | Flavone | Acacetin-acetyl-glucoside-rhamnoglucoside | C34H36O22 | 796.6364 | 797 | 519 | 240; 185 | Mentha [52] | ||
32 | Flavone | Luteolin 7,3’-disulphate | C15H10O12S2 | 446.3627 | 447 | 287; 366 | 241 | Zostera marina [10] | ||
33 | Flavan-3-ol | Epiafzelechin [(epi)Afzelechin] * | C15H14O5 | 274.2687 | 275 | 244; 233; 216; 193; 175 | 237; 213; 192; 175; 15; 145 | Cassia granidis [7]; Cassia abbreviata [8]; A. cordifolia; F. glaucescens; F. herrerae [9] | ||
34 | Flavan-3-ol | Derivative of (epi)Afzelechin * | C15H16O5 | 276.2845 | 277 | 245; 229; 216; 207 | 233; 215 | 211 | ||
35 | Flavan-3-ol | Catechin [D-Catechol] * | C15H14O6 | 290.2681 | 291 | 261; 173 | 243; 191; 173; 143 | 143; 125 | millet grains [34]; Camellia kucha [35]; Vaccinium macrocarpon [41]; Eucalyptus [55]; Radix polygoni multiflori [56]; Rh. rosea [57] | |
36 | Flavan-3-ol | (epi)Catechin * | C15H14O6 | 290.2681 | 291 | 261; 231; 209; 191; 173 | 243; 215; 199; 179; 161 | 233; 206; 180; 161; 138 | Andean blueberry [24]; millet grains [34]; Vaccinium macrocarpon [41]; Eucalyptus [55]; Rh. rosea [57]; Rubus occidentalis [58] | |
37 | Flavan-3-ol | (epi)Afzelechin derivative * | C18H16O10 | 392.3136 | 393 | 274 | 245; 221; 205; 191; 175; 157 | 237; 192; 176; 157 | ||
38 | Flavan-3-ol | Catechin derivative * | C19H20O11 | 424.3555 | 425 | 291 | 261; 173 | 173 | ||
39 | Flavanone | (2S)-Naringenin 4′-O-sulfate * | C15H12O8S | 352.3160 | 351 | 271 | 269 | 225 | Tamarix africana [59] | |
40 | Anthocyanin | Pelargonidin-3-O-glucoside (callistephin) * | C21H21O10 | 433.3854 | 433 | 271 | 153; 247; 225; 187; 163 | 127 | Rubus ulmifolius [13]; Strawberry [14]; Vigna unguiculata [15] | |
41 | Anthocyanin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; Kuromarin] * | C21H21O11+ | 449.3848 | 449 | 287 | 241; 153 | Rubus ulmifolius [13]; Rapeseed petals [27]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum; Myrteola nummalaria; Gaultheria mucronata; Gaultheria antarctica; Rubus geoides; Fuchsia magellanica [60]; Oryza sativa [61] | ||
42 | Anthocyanin | Pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside) * | C24H23O13 | 519.4388 | 519 | 271; 433 | 153; 224 | Strawberry [14]; Wheat [16] | ||
43 | Anthocyanin | Cyanidin 3-(6”-malonylglucoside) * | C24H23O14 | 535.4310 | 535 | 287; 449 | 241; 153 | Wheat [16]; Strawberry [14,62] | ||
44 | Phenolic acids and derivatives | Zosteric acid [P-Sulfoxycinnamic acid; 4-Hydroxycinnamate Sulfate] | C9H8O6S | 244.2212 | 245 | 145; 202 | 141 | Zostera marina [11] | ||
45 | Phenolic acids and derivatives | Caffeic acid [(2E)-3-(3,4-Dihydroxyphenyl)acrylic acid] | C9H8O4 | 180.1574 | 181 | 135; 163; 145; 121 | 119 | Zostera marina [11]; Vaccinium macrocarpon [41]; Lonicera japonicum [43]; Dracocephalum palmatum [46]; Radix polygoni multiflori [56]; Rubus occidentalis [58] | ||
46 | Phenolic acids and derivatives | Caffeic acid derivative | C9H18O6 | 222.2356 | 221 | 181 | 142 | Embelia [63] | ||
47 | Phenolic acids and derivatives | 3-O-caffeoylshikimic acid [3-Csa] * | C16H16O8 | 336.2934 | 337 | 191; 173; 153 | 123 | Grataegi Fructus [64] | ||
48 | Phenolic acids and derivatives | Rosmarinic acid | C18H16O8 | 360.3148 | 359 | 161; 135 | 133 | Zostera marina [10,11]; Rosa rugosa [36]; Dracocephalum palmatum [46]; Rosmarinus officinalis [49]; Huolisu Oral Liquid [65] | ||
49 | Phenolic acids and derivatives | Caffeic acid derivative | C16H18O9Na | 377.2985 | 376 | 341; 215 | 179 | 119 | Embelia [63]; Bougainvillea [66] | |
50 | Phenolic acids and derivatives | Ellagic acid pentoside [Ellagic acid 4-O-xylopyranoside] * | C19H14O12 | 434.3073 | 433 | 257 | 227; 157 | 215 | Eucalyptus [40]; Strawberry [62]; Punica granatum [67] | |
51 | Phenolic acids and derivatives | Sagerinic acid * | C36H32O16 | 720.6297 | 719 | 359 | 161 | Mentha [17]; Lamiaceae spp. [18]; Lepechinia [19] | ||
52 | Hydroxycoumarin | Umbelliferone [Skimmetin; Hydragin] * | C9H6O3 | 162.1421 | 163 | 145 | 117 | F. glaucescens [9]; Sanguisorba officinalis [20]; Actinidia chinensis [21] | ||
53 | Dihydrochalcone | Phloretin [Dihydronaringenin; Phloretol] * | C15H14O5 | 274.2687 | 275 | 245; 175 | 214; 175 | G. linguiforme [9]; Eucalyptus [55]; Punica granatum [67] | ||
OTHERS | / | |||||||||
54 | Cyclohexanecarboxylic acid | Perillic acid | C10H14O2 | 166.217 | 167 | 149 | 147 | 137 | Mentha [48] | |
55 | Amino acid | L-threanine | C7H14N2O3 | 174.1977 | 175 | 157; 147; 125 | 147; 129 | Camelia kucha [35] | ||
56 | Omega-5 fatty acid | Myristoleic acid [Cis-9-Tetradecanoic acid] * | C14H26O2 | 226.3550 | 227 | 209 | 192; 139 | 122 | F. glaucescens [9] | |
57 | Carotenoid | 3-OH-beta-apo-11-carotenal | C15H22O2 | 234.3340 | 235 | 214; 157 | 157 | 140 | Carotenoids [68] | |
58 | Peptide | 5-Oxo-L-propyl-L-isoleucine | C11H18N2O4 | 242.2716 | 243 | 141 | 131 | Potato leaves [25] | ||
59 | Carotenoid | beta-apo-13-carotenal | C18H26O | 258.4984 | Carotenoids [68] | |||||
60 | Aporphine alkaloid | Anonaine | C17H15NO2 | 265.3065 | 266 | 219 | 202 | Magnolia [69] | ||
61 | Anthraquinone | Emodin [6-Methyl-1,3,8-trihydroxyanthraquinone] | C15H10O5 | 270.2369 | 271 | 241 | 162 | Radix polygoni multiflori [56]; Huolisu Oral Liquid [65]; [70] | ||
62 | Omega-3 fatty acid | Linolenic acid (Alpha-Linolenic acid; Linolenate) | C18H30O2 | 278.4296 | 277 | 273; 233; 205 | 273 | Salviae [71]; rice [72]; Pinus sylvestris [73] | ||
63 | Omega-9 unsaturated fatty acid | Oleic acid (Cis-9-Octadecenoic acid; Cis-Oleic acid) | C18H34O2 | 282.4614 | 283 | 265; 223; 215; 188; 168 | 197 | Zostera marina [11]; Sanguisorba officinalis [20]; Huolisu Oral Liquid [65] | ||
64 | Carotenoid | Apo-14’-Zeaxanthinal | C22H30O2 | 326.4735 | 327 | 281; 329; 225; 173 | 222 | Carotenoids [74] | ||
65 | Amino disaccharide | Trehalosyl 2,4,6’- triamine | C12H26N3O8 | 340.3501 | 341 | 276; 210; 331 | [75] | |||
66 | Omega-hydroxy-long-chain-fatty acid | Hydroxy docosanoic acid | C22H44O3 | 356.5830 | 355 | 309 | 305; 281 | 287 | A. cordifolia [9] | |
67 | Sterol | Stigmasterol [Stigmasterin; Beta-Stigmasterol] | C29H48O | 412.6908 | 413 | 301; 171 | 189 | 171 | A. cordifolia; F. pottsii [9]; Oryza sativa [61]; Olive leaves [76]; Hedyotis diffusa [77] | |
68 | Sterol | Fucosterol [Fucostein; Trans-24-Ethylidenecholesterol] * | C29H48O | 412.6908 | 413 | 395; 301; 267; 189 | 189 | F. pottsii [9]; Oryza sativa [61] | ||
69 | Sterol | Beta-Sitostenone [Stigmast-4-En-3-One; Sitostenone] | C29H48O | 412.6908 | 413 | 301; 269; 189; 171 | 189; 171; 153 | F. herrerae [9]; Cryptomeria japonica bark [78]; Xanthium sibiricum [79]; Terminalia laxiflora [80] | ||
70 | Iridoid monoterpenoid | Dihydroisovaltrate | C22H32O8 | 424.4847 | 425 | 365; 281 | 309; 235 | 253 | Rhus coriaria [23] | |
71 | Sterol | Sigmast-4-en-6-beta-ol-3-one | C29H48O2 | 428.6902 | 429 | 297; 153 | 261 | Xanthium sibiricum [79] | ||
72 | Anabolic steroid; Androgen; Androgen ester | Vebonol | C30H44O3 | 452.6686 | 453 | 435; 336; 305; 209 | 336; 309; 226 | 292; 209; 139 | Rhus coriaria [23]; Hylocereus polyrhizus [81] | |
73 | Triterpenic acid | 1-Hydroxy-3-oxours-12-en-28-oic acid | C30H46O4 | 470.6838 | 471 | 453; 337; 209 | 209; 336; 435 | 182 | Pear [82] | |
74 | Carotenoid | (all-E)-lutein 3’-O-myristate | C40H54O | 550.8562 | 551 | 531; 501; 452; 431 | 333; 303; 271 | 314; 303 | Carotenoids [83]; Rosa rugosa [84] | |
75 | Carotenoid | Antheraxanthin [All-Trans-Antheraxanthin] | C40H56O3 | 584.8708 | 585 | 567; 493; 451; 395; 342; | 493;413; 383; 337 | 475; 422; 409; 377 | Carotenoids [83]; Sarsaparilla [85]; Arbutus unedo [86] | |
76 | Carotenoid | (all-E)-Violaxanthin | C40H56O4 | 600.8702 | 601 | 581; 540; 501; 415; 301 | 523; 442; 290 | Rosa rugosa [84]; Arbutus unedo [86]; Carica papaya [87]; Physalis peruviana [88] | ||
77 | Chlorophylle derivative | Chlorophyllide a | C35H34MgN4O5 | 614.9733 | 615 | 579; 545; 528; 478 | 508 | [89,90] |
References
- Seshagiri, R. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur. J. Protistol. 2002, 38, 127–145. [Google Scholar]
- Loenko, U.N.; Artyukov, A.A.; Kozlovskaya, E.P. Zosterin; Dal’nauka: Vladivostok, Russia, 1997; 212p. [Google Scholar]
- Ovodov, Y.; Ovodova, R.; Bondarenko, O.; Krasikova, I. The pectic substances of zosteraceae: Part IV. Pectinase digestion of zosterine. Carbohydr. Res. 1971, 18, 311–318. [Google Scholar] [CrossRef]
- Wang, H.; Tang, X.; Chen, J.; Shang, S.; Zhu, M.; Liang, S.; Zang, Y. Comparative studies on the response of Zostera marina leaves and roots to ammonium stress and effects on nitrogen metabolism. Aquat. Toxicol. 2021, 240, 105965. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, X.-Q.; Zhang, Q.-S.; Tan, Y.; Liu, Z.; Ma, M.-Y.; Wang, M.-X.; Xu, B. Photoinactivation of the oxygen-evolving complex regulates the photosynthetic strategy of the seagrass Zostera marina. J. Photochem. Photobiol. B Biol. 2021, 222, 112259. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.M.; Krivoshapko, O.N.; Klimovich, A.A.; Artyukov, A.A. Biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulphated derivatives. Biomeditsinskaya Khimiya 2016, 62, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.; Abdelfattah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chromatogr. Sci. 2020, 59, 618–626. [Google Scholar] [CrossRef]
- Enerstvedt, K.H.; Jordheim, M.; Andersen, M. Isolation and Identification of Flavonoids Found in Zostera marina Collected in Norwegian Coastal Waters. Am. J. Plant Sci. 2016, 7, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
- Papazian, S.; Parrot, D.; Buryskova, B.; Weinberger, F.; Tasdemir, D. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 2019, 9, 3323. [Google Scholar] [CrossRef] [Green Version]
- Teles, Y.C.F.; Souza, M.S.R.; de Fatima Vanderlei de Souza, M. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018, 23, 480. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajdzanovska, M.; Gjamovski, V.; Stefova, M. HPLC-DADA-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.J.; Lee, M.H.; Park, C.H.; Pae, S.B.; Shim, K.B.; Ko, J.M.; Park, K.Y. Identification and Characterization of Anthocyanins in Yard-Long Beans (Vigna unguiculata ssp. sesquipedalis L.) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization/Mass Spectrometry (HPLC-DAD-ESI/MS) Analysis. J. Agric. Food Chem. 2010, 58, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.; Dall’Asta, C.; Del Rio, D. Phenolic and Volatile Composition of a Dry Spearmint (Mentha spicata L.) Extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [Green Version]
- Del Mar Contreras, M.; Algieri, F.; Rodriguez-Nogales, A.; Galvez, J.; Segura-Carretero, A. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar]
- Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
- Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 dated August 11, 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/Фapмaкoneя%20Coюзa%2011%2008.pdf (accessed on 15 July 2022).
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Moneta, B.G.; Montone, C.M.; Piovesana, S.; Laganà, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
- Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zakharenko, A.M.; Grudev, V.; Ercisli, S.; Golokhvast, K.S. Comparative analysis of the multicomponent composition of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) using supercritical CO2-extraction and HPLC-MS/MS spectrometry. Molecules 2020, 25, 3774. [Google Scholar] [CrossRef]
- Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Zhang, W.-X.; Chao, I.-C.; Hu, D.-J.; Shakerian, F.; Ge, L.; Liang, X.; Wang, Y.; Zhao, J.; Li, S.-P. Comparison of Antioxidant Activity and Main Active Compounds among Different Parts of Alpinia officinarum Hance Using High-Performance Thin Layer Chromatography-Bioautography. J. AOAC Int. 2019, 102, 726–733. [Google Scholar] [CrossRef]
- Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A.; Shchavlinskii, A.N. Flavonoids of the above-ground part of Rhodiola rosea. II. Structure of novel glycosides of herbacetin and gossypetin. Chem. Nat. Connect. 1985, 4, 496–507. [Google Scholar]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, Z.; Jiang, J.; Zhang, P. Chemical constituents of roots of Rhodiola crenulata. Chin. Pharm. J. 2013, 48, 410–413. [Google Scholar]
- Zhang, S.; Liu, C.; Bi, H.; Wang, C. Extraction of flavonoids from Rhodiola sachalinensis A. Bor by UPE and the antioxidant activity of its extract. Nat. Prod. Res. 2008, 22, 178–187. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant. Efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
- Belmehdi, O.; Bouyahya, A.; Jeko, J.; Cziaky, Z.; Zengin, G.; Sotkó, G.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second. Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1112, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
- Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [Green Version]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qiu, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2014, 53, 945–952. [Google Scholar] [CrossRef]
- Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122. [Google Scholar]
- Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-kB and MAPKs in Lipopolysaccharide-Induced RAW264.7 Cells. Molecules 2017, 22, 811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves DS, A.; Romaniuk, A.; Rybczynska, M.; Thiem, B. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- Santos, S.A.; Vilela, C.; Freire, C.; Neto, C.; Silvestre, A. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166. [Google Scholar] [CrossRef]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
- Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin Secondary Metabolites of Black Raspberry (Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. J. Agric. Food Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
- Karker, M.; De Tommasi, N.; Smaoui, A.; Abdelly, C.; Ksouri, R.; Braca, A. New Sulphated Flavonoids from Tamarix africana and Biological Activities of Its Polar Extract. Planta Med. 2016, 82, 1374–1380. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Seekhaw, P.; Mahatheeranont, S.; Sookwong, P.; Luangkamin, S.; Na Lampang Neonplab, A.; Puangsombat, P. Phytochemical Constituents of Thai Dark Purple Glutinous Rice Bran Extract Cultivar Luem Pua (Oryza sativa L.). Chiang Mai J. Sci. 2018, 45, 1383–1395. [Google Scholar]
- Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2013, 146, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.-Y.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.; Jia, K.-P.; Wang, J.Y.; Al-Babili, S. A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Anal. Chim. Acta 2018, 1035, 87–95. [Google Scholar] [CrossRef]
- Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef]
- Luo, D.-Q.; Jia, P.; Zhao, S.-S.; Zhao, Y.; Liu, H.-J.; Wei, F.; Ma, S.-C. Identification and Differentiation of Polygonum multiflorum Radix and Polygoni multiflori Radix Preaparata through the Quantitative Analysis of Multicomponents by the Single-Marker Method. J. Anal. Methods Chem. 2019, 2019, 7430717. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lipophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofrè, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2018, 1032, 40–47. [Google Scholar] [CrossRef]
- Lu, Y.C.; Mondal, S.; Wang, C.-C.; Lin, C.-H.; Mong, K.-K.T. Diverse Synthesis of Natural Trehalosamines and Synthetic 1,1′-Disaccharide Aminoglycosides. ChemBioChem 2018, 20, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, Z.S.; Álvarez-Rivera, G.; Mendiola, J.; Ibáñez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC–MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512. [Google Scholar] [CrossRef]
- Li, W.-H.; Chang, S.-T.; Chang, S.-C.; Chang, H.-T. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat. Prod. Res. 2008, 22, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.; Chen, G.; Han, C.; Chen, Z.; Song, X.; Ren, M.; Jiang, H. Chemical constituents from the roots of Xanthium sibiricum L. Nat. Prod. Res. 2011, 25, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.Y.; Julkunen-Tiitto, R.; Lampi, A.-M.; Kanninen, M.; Luukkanen, O.; Sipi, M.; Lehtonen, M.; Vuorela, H.; Fyhrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018, 227, 82–96. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Malarski, A.; Böhm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pelayo, R.; Hornero-Méndez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem. 2016, 199, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef]
- Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
- Milenkovic, S.M.; Zvezdanovic, J.B.; Andelkovic, T.D.; Markovic, D.Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, Visible and spectroscopy studies. Adv. Technol. 2012, 1, 16–24. [Google Scholar]
№ | Class of Compounds | Identified Polyphenols | Seagrass Collected in Water | Fresh Seagrass Ejection on the Surf Edge | Old Seagrass Ejection on the Surf Edge |
---|---|---|---|---|---|
1 | Flavonol | Kaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * | |||
2 | Flavonol | Kaempferide [4’-O-Methylkaempferol] * | |||
3 | Flavonol | Herbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * | |||
4 | Flavonol | Dihydroquercetin [Taxifolin; Taxifoliol] * | |||
5 | Flavonol | Myricetin [3,5,7-Trihydroxy-2-(3,4,5-Trihydroxyphenyl)-4H-Chromen-4-One] * | |||
6 | Flavonol | Kaempferol 7-sulphate * | |||
7 | Flavonol | Isorhamnetin 3-sulphate * | |||
8 | Flavonol | Kaempferol-7-O-α-L-rhamnoside * | |||
9 | Flavonol | Aromadendrin 7-O-rhamnoside * | |||
10 | Flavonol | Quercitrin [Quercetin 3-L- rhamnoside; Quercetrin] * | |||
11 | Flavonol | Astragalin * | |||
12 | Flavonol | Kaempferol 3-(6’’-malonylglucoside) * | |||
13 | Flavonol | Herbacetin-3-O-glucoside-7-O-xylo/ara * | |||
14 | Flavone | Luteolin | |||
15 | Flavone | Diosmetin | |||
16 | Flavone | Chrysoeriol [Chryseriol] | |||
17 | Flavone | Dihydroxy-dimethoxy(iso)flavone * | |||
18 | Flavone | Cirsimaritin * | |||
19 | Flavone | Cirsiliol * | |||
20 | Flavone | Jaceosidin [5,7,4’-trihydroxy-6’,5’-dimetoxyflavone] * | |||
21 | Flavone | 5,6,4’-Trihydroxy-7,8-dimetoxyflavone * | |||
22 | Flavone | Syringetin * | |||
23 | Flavone | Apigenin 7-sulfate | |||
24 | Flavone | Hydroxy-tetramethoxy(iso) flavone * | |||
25 | Flavone | Luteolin 7-sulphate | |||
26 | Flavone | Chrysoeriol-7-sulphate | |||
27 | Flavone | Diosmetin-7-sulphate | |||
28 | Flavone | Luteolin 7-O-glucoside [Cynaroside; Luteoloside] | |||
29 | Flavone | Linarin [Acaciin; Buddleoside; Acacetin-7-O-Rutinoside; Linarigenin Glycoside] * | |||
30 | Flavone | Apigenin 6-C-[6”-acetyl-2”-O-deoxyhexoside]-glucoside * | |||
31 | Flavone | Acacetin-acetyl-glucoside-rhamnoglucoside | |||
32 | Flavone | Luteolin 7,3’-disulphate | |||
33 | Flavan-3-ol | Epiafzelechin [(epi)Afzelechin] * | |||
34 | Flavan-3-ol | Derivative of (epi)Afzelechin * | |||
35 | Flavan-3-ol | Catechin [D-Catechol] * | |||
36 | Flavan-3-ol | (epi)Catechin * | |||
37 | Flavan-3-ol | (epi)Afzelechin derivative * | |||
38 | Flavan-3-ol | Catechin derivative * | |||
39 | Flavanone | (2S)-Naringenin 4′-O-sulfate * | |||
40 | Anthocyanin | Pelargonidin-3-O-glucoside (callistephin) * | |||
41 | Anthocyanin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; Kuromarin] * | |||
42 | Anthocyanin | Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) * | |||
43 | Anthocyanin | Cyanidin 3-(6”-malonylglucoside) * | |||
44 | Phenolic acids and derivatives | Zosteric acid [P-Sulfoxycinnamic acid; 4-Hydroxycinnamate Sulfate] | |||
45 | Phenolic acids and derivatives | Caffeic acid [(2E)-3-(3,4-Dihydroxyphenyl)acrylic acid] | |||
46 | Phenolic acids and derivatives | Caffeic acid derivative | |||
47 | Phenolic acids and derivatives | 3-O-caffeoylshikimic acid [3-Csa] * | |||
48 | Phenolic acids and derivatives | Rosmarinic acid | |||
49 | Phenolic acids and derivatives | Caffeic acid derivative | |||
50 | Phenolic acids and derivatives | Ellagic acid pentoside [Ellagic acid 4-O-xylopyranoside] * | |||
51 | Phenolic acids and derivatives | Sagerinic acid * | |||
52 | Hydroxycoumarin | Umbelliferone [Skimmetin; Hydragin] * | |||
53 | Dihydrochalcone | Phloretin [Dihydronaringenin; Phloretol] * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. https://doi.org/10.3390/separations9070182
Razgonova MP, Tekutyeva LA, Podvolotskaya AB, Stepochkina VD, Zakharenko AM, Golokhvast K. Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations. 2022; 9(7):182. https://doi.org/10.3390/separations9070182
Chicago/Turabian StyleRazgonova, Mayya P., Lyudmila A. Tekutyeva, Anna B. Podvolotskaya, Varvara D. Stepochkina, Alexander M. Zakharenko, and Kirill Golokhvast. 2022. "Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass" Separations 9, no. 7: 182. https://doi.org/10.3390/separations9070182
APA StyleRazgonova, M. P., Tekutyeva, L. A., Podvolotskaya, A. B., Stepochkina, V. D., Zakharenko, A. M., & Golokhvast, K. (2022). Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations, 9(7), 182. https://doi.org/10.3390/separations9070182