Method Development and Validation for Simultaneous Analysis of Eleven Components for Quality Control of Geumgwesingihwan Using HPLC–DAD and UPLC–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Preparation of GGSGH Sample
2.4. Preparation of Sample Solutions and Standard Solutions for HPLC–DAD Analysis
2.5. HPLC Equipment and Simultaneous Analysis Conditions
2.6. Validation Method for the Developed HPLC Simultaneous Analysis Method
2.7. System Suitability Test
2.8. Simultaneous Analysis of GGSGH Samples Using UPLC–MS/MS
3. Results and Discussion
3.1. HPLC Phytochemical Profiling of Each Raw Herb Composing GGSGH
3.2. Selection of Components for Continuous Quality Evaluation of GGSGH
3.3. Optimization of HPLC Simultaneous Analysis Conditions
3.4. Validation Method for the Developed HPLC Simultaneous Analysis
3.5. System Suitability Test
3.6. Simultaneous Determination of Compounds 1–11 in GGSGH Samples Using HPLC
3.7. Simultaneous Determination of Compounds 1–11 in GGSGH Samples Using UPLC–MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, C.S.; Shin, H.K. Development and validation of a high-performance liquid chromatography method for quality assessment of oriental medicine, Dokhwalgisaeng-tang. Appl. Sci. 2021, 11, 7829. [Google Scholar] [CrossRef]
- Ha, W.R.; Park, J.H.; Kim, J.H. Optimization for decocting later of Menthae Herba in Eungyo-San, a herbal formula, using response surface methodology with gas chromatography/mass spectrometry. Pharmacogn. Mag. 2018, 14, 17–21. [Google Scholar] [PubMed]
- Wu, T.Y.; Chang, F.R.; Liou, J.R.; Lo, I.W.; Chung, T.C.; Lee, L.Y.; Chi, C.C.; Du, Y.C.; Wong, M.H.; Juo, S.H.H.; et al. Rapid HPLC quantification approach for detection of active constituent in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front. Pharmacol. 2016, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Yi, L.Z.; Liang, Y.Z. Traditional Chinese medicine and separation science. J. Sep. Sci. 2008, 31, 2113–2137. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.; Guo, J.; Zhang, Z.; Wang, X. Simultaneous quantification of ten active components in traditional Chinese formula Sijunzi decoction using a UPLC-PDA method. J. Anal. Methods Chem. 2014, 2014, 570359. [Google Scholar]
- Hwang, D.Y. Bangyakhappyeon; Yeokang Publishing Co.: Seoul, Korea, 1993; p. 112. [Google Scholar]
- Hwang, S.Y.; Hwang, B.Y.; Choi, W.H.; Jung, H.J.; Huh, J.D.; Lee, K.S.; Ro, J.S. Quantitative determination of 5-hydroxymethyl-2-furaldehyde in the Rehmanniae Radix Preparata samples at various processing stages. Korean J. Pharmacogn. 2001, 32, 116–120. [Google Scholar]
- Seo, C.S.; Huang, D.S.; Lee, J.K.; Ha, H.K.; Kim, H.K.; Seo, Y.B.; Shin, H.K. Quantitative determination of the marker constituent of Dioscoreae Rhizoma by the packaging methods. Korea J. Herbol. 2008, 23, 45–49. [Google Scholar]
- Nam, D.H.; Son, K.H.; Kim, J.Y.; Kim, S.D.; Lim, S.K. Quantitative determination of dioscin from Dioscorea Rhizoma. Korean J. Pharmacogn. 2006, 37, 33–36. [Google Scholar]
- Jiang, Y.; Chen, H.; Wang, L.; Zou, J.; Zheng, X.; Liu, Z. Quality evaluation of polar and active components in crude and processed Fructus Corni by quantitative analysis of multicomponents with single marker. J. Anal. Methods Chem. 2016, 2016, 6496840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) Wolf by HPLC and HPLC-MSn with the aid of chemometrics. Molecules 2016, 12, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Lee, S.; Baek, J.Y.; Seo, C.S.; Yun, H.; Kim, S.N.; Kang, K.S.; Choi, Y.K. Estrogenic activity of ethyl gallate and its potential use in hormone replacement therapy. Bioorg. Med. Chem. Lett. 2021, 40, 127919. [Google Scholar] [CrossRef]
- Kim, K.H.; Song, H.H.; Ahn, K.S.; Oh, S.R.; Sadikot, R.T.; Joo, M. Ethanol extract of the tuber of Alisma orientale reduces the pathologic features in a chronic obstructive pulmonary disease mouse model. J. Ethnopharmacol. 2016, 188, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.T.; Jeong, S.Y.; Moon, D.C.; Son, K.H.; Son, J.K.; Woo, M.H. High performance liquid chromatography used for quality control of Achyranthis Radix. Arch. Pharm. Res. 2012, 35, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Lee, J.G.; Jung, H.W.; Choi, J.Y.; Choi, E.H.; Kim, D.C.; Kim, J.A.; Son, J.K.; Lee, S.H. Isolation of melanin biosynthesis inhibitory compounds from the seeds of Plantago asiatica L. Korean J. Pharmacogn. 2007, 38, 376–381. [Google Scholar]
- Yang, Q.; Qi, M.; Tong, R.; Wang, D.; Ding, L.; Li, Z.; Huang, C.; Wang, Z.; Yang, L. Plantago asiatica L. seed extract improves lipid accumulation and hyperglycemia in high-fat-diet-induced obese mice. Int. J. Mol. Sci. 2017, 18, 1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H. The Dispensatory on the Visual and Organoleptic Examination of Herbal Medicine; National Institute of Food and Drug Safety Evaluation: Seoul, Korea, 2013; pp. 211–636.
- Seo, C.S.; Yoo, S.R.; Jeong, S.J.; Ha, H. Quantification of the constituents of the traditional Korea medicine, Samryeongbaekchul-san, and assessment of its antiadipogenic effect. Saudi. Pharm. J. 2019, 27, 145–153. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Simultaneous determination of 12 marker components in Yeonkyopaedok-san using HPLC-PDA and LC–MS/MS. Appl. Sci. 2020, 10, 1713. [Google Scholar] [CrossRef] [Green Version]
- International Conference on Harmonisation. Guidance for Industry, Q2B, Validation of Analytical Procedures: Methodology; Food and Drug Administration: Rockville, MD, USA, 1996.
- U.S. Food and Drug Administration. Reviewer Guidance, Validation of Chromatographic Methods; Center for Drug Evaluation and Research: Rockville, MD, USA, 1994.
Analyte a | Ion Mode | Exact Mass (Da) | Precursor Ion (Q1, m/z) | Product Ion (Q3, m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|
1 | − | 170.02 | 169.0 | 125.0 | 40 | 13 |
2 | + | 126.03 | 126.9 | 109.0 | 25 | 8 |
3 | − | 374.12 | 373.0 | 122.9 | 50 | 15 |
4 | 406.15 | 450.8 | 160.9 | 30 | 15 | |
5 | + | 390.15 | 391.1 | 228.9 | 12 | 8 |
6 | − | 480.16 | 478.9 | 448.9 | 60 | 5 |
7 | + | 624.21 | 625.1 | 163.0 | 16 | 28 |
8 | + | 542.16 | 543.1 | 211.0 | 16 | 14 |
9 | 122.04 | 122.5 | 79 | 15 | 8 | |
10 | − | 584.19 | 583.0 | 553.0 | 70 | 5 |
11 | + | 166.06 | 166.9 | 42.9 | 16 | 16 |
Analyte a | Detection Wavelength (nm) | Linear Range (μg/mL) | Regression Equation b | r2 | LOD (μg/mL) | LOQ (μg/mL) | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | 270 | 0.31–20.00 | y = 55,170.65x + 3666.55 | 0.9998 | 0.03 | 0.10 | 5.32 |
2 | 280 | 0.63–40.00 | y = 94,130.28x + 14147.39 | 0.9998 | 0.04 | 0.13 | 7.50 |
3 | 235 | 0.31–20.00 | y = 13,975.16x + 1218.48 | 0.9999 | 0.02 | 0.05 | 8.29 |
4 | 235 | 0.63–40.00 | y = 33,876.65x + 5744.90 | 0.9998 | 0.05 | 0.14 | 11.75 |
5 | 235 | 0.31–20.00 | y = 57,411.73x + 5068.48 | 0.9998 | 0.01 | 0.03 | 14.13 |
6 | 230 | 0.63–40.00 | y = 15,482.56x − 2650.38 | 0.9999 | 0.07 | 0.22 | 16.08 |
7 | 330 | 0.31–20.00 | y = 15,904.03x + 1722.64 | 0.9999 | 0.03 | 0.08 | 18.09 |
8 | 270 | 0.31–20.00 | y = 9735.69x + 978.96 | 0.9998 | 0.04 | 0.12 | 20.32 |
9 | 230 | 0.31–20.00 | y = 60,978.26x + 6475.75 | 0.9998 | 0.02 | 0.06 | 21.17 |
10 | 230 | 0.31–20.00 | y = 20,261.17x + 476.60 | 0.9999 | 0.06 | 0.19 | 27.79 |
11 | 275 | 0.63–40.00 | y = 192,362.00x + 22,923.35 | 0.9999 | 0.03 | 0.08 | 31.89 |
Analyte a | Spiked Amount (μg/mL) | Found Amount (μg/mL) | Recovery (%) b | SD | RSD (%) |
---|---|---|---|---|---|
1 | 1.00 | 1.01 | 100.55 | 1.43 | 1.42 |
2.00 | 2.03 | 101.32 | 0.74 | 0.73 | |
4.00 | 4.05 | 101.34 | 1.64 | 1.61 | |
2 | 2.00 | 2.02 | 101.17 | 0.80 | 0.79 |
5.00 | 5.06 | 101.17 | 1.53 | 1.51 | |
10.00 | 10.11 | 101.09 | 0.52 | 0.52 | |
3 | 1.00 | 1.01 | 101.44 | 1.29 | 1.28 |
2.00 | 2.02 | 100.90 | 1.25 | 1.24 | |
4.00 | 4.10 | 102.47 | 0.59 | 0.57 | |
4 | 2.00 | 1.98 | 99.06 | 1.36 | 1.37 |
4.00 | 4.12 | 102.88 | 1.50 | 1.46 | |
8.00 | 8.15 | 101.87 | 0.29 | 0.28 | |
5 | 1.00 | 1.01 | 100.66 | 1.15 | 1.14 |
2.00 | 2.00 | 99.84 | 1.01 | 1.01 | |
4.00 | 4.17 | 104.20 | 0.51 | 0.49 | |
6 | 2.00 | 1.99 | 99.15 | 1.52 | 1.53 |
5.00 | 5.12 | 102.42 | 0.91 | 0.89 | |
10.00 | 10.04 | 100.56 | 0.38 | 0.38 | |
7 | 1.00 | 1.02 | 101.99 | 1.18 | 1.16 |
2.00 | 2.02 | 101.13 | 0.73 | 0.72 | |
4.00 | 4.14 | 103.53 | 0.41 | 0.40 | |
8 | 1.00 | 1.01 | 100.92 | 1.00 | 1.00 |
2.00 | 2.06 | 103.10 | 1.05 | 1.01 | |
4.00 | 4.03 | 100.78 | 0.95 | 0.94 | |
9 | 1.00 | 0.99 | 99.25 | 0.90 | 0.90 |
2.00 | 1.96 | 98.03 | 0.58 | 0.59 | |
4.00 | 3.96 | 99.11 | 0.37 | 0.37 | |
10 | 1.00 | 1.01 | 100.77 | 1.38 | 1.37 |
2.00 | 1.96 | 98.12 | 1.52 | 1.55 | |
4.00 | 4.07 | 101.75 | 0.81 | 0.80 | |
11 | 2.00 | 1.96 | 97.78 | 1.97 | 2.01 |
4.00 | 4.12 | 102.96 | 0.67 | 0.65 | |
8.00 | 8.06 | 100.78 | 0.39 | 0.38 |
Analyte a | Conc. (μg/mL) | Intra-Day (n = 5) | Inter-Day (n = 5) | ||||
---|---|---|---|---|---|---|---|
Observed Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | Observed Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | ||
1 | 5.00 | 5.09 | 0.17 | 101.77 | 5.15 | 1.11 | 102.98 |
10.00 | 9.86 | 1.39 | 98.64 | 9.93 | 0.98 | 99.27 | |
20.00 | 19.67 | 0.88 | 98.33 | 19.83 | 1.06 | 99.13 | |
2 | 10.00 | 10.29 | 0.46 | 102.86 | 10.42 | 1.15 | 104.21 |
20.00 | 19.87 | 1.64 | 99.37 | 20.02 | 1.18 | 100.09 | |
40.00 | 39.44 | 0.98 | 98.59 | 39.89 | 1.33 | 99.72 | |
3 | 5.00 | 5.07 | 0.24 | 101.50 | 5.13 | 1.20 | 102.59 |
10.00 | 9.90 | 0.85 | 98.95 | 9.93 | 0.63 | 99.26 | |
20.00 | 19.66 | 0.37 | 98.29 | 19.78 | 0.95 | 98.88 | |
4 | 10.00 | 10.14 | 0.16 | 101.38 | 10.27 | 1.19 | 102.73 |
20.00 | 19.71 | 1.62 | 98.54 | 19.84 | 1.05 | 99.19 | |
40.00 | 39.25 | 0.84 | 98.13 | 39.53 | 1.05 | 98.83 | |
5 | 5.00 | 5.07 | 0.30 | 101.36 | 5.13 | 1.15 | 102.64 |
10.00 | 9.84 | 1.08 | 98.36 | 9.92 | 0.92 | 99.18 | |
20.00 | 19.61 | 0.90 | 98.05 | 19.76 | 1.04 | 98.80 | |
6 | 10.00 | 9.88 | 0.38 | 98.84 | 9.98 | 1.23 | 99.79 |
20.00 | 19.33 | 1.56 | 96.64 | 19.43 | 1.06 | 97.14 | |
40.00 | 39.41 | 0.96 | 98.51 | 39.76 | 1.22 | 99.39 | |
7 | 5.00 | 5.03 | 0.22 | 100.56 | 5.09 | 1.18 | 101.86 |
10.00 | 9.82 | 1.46 | 98.20 | 9.88 | 1.01 | 98.82 | |
20.00 | 19.62 | 0.69 | 98.10 | 19.72 | 0.87 | 98.61 | |
8 | 5.00 | 5.07 | 0.21 | 101.38 | 5.13 | 1.11 | 102.65 |
10.00 | 9.85 | 1.67 | 98.46 | 9.90 | 1.08 | 99.04 | |
20.00 | 19.66 | 0.68 | 98.32 | 19.77 | 1.01 | 98.85 | |
9 | 5.00 | 5.14 | 0.17 | 102.81 | 5.21 | 1.18 | 104.17 |
10.00 | 9.95 | 1.27 | 99.52 | 10.07 | 1.31 | 100.65 | |
20.00 | 19.84 | 1.19 | 99.20 | 20.09 | 1.40 | 100.44 | |
10 | 5.00 | 5.01 | 0.33 | 100.23 | 5.07 | 1.16 | 101.36 |
10.00 | 9.80 | 1.45 | 97.96 | 9.85 | 1.23 | 98.54 | |
20.00 | 20.27 | 0.50 | 101.37 | 20.03 | 1.26 | 100.13 | |
11 | 10.00 | 10.30 | 0.18 | 103.04 | 10.43 | 1.12 | 104.31 |
20.00 | 20.03 | 1.23 | 100.13 | 20.29 | 1.35 | 101.47 | |
40.00 | 39.87 | 1.19 | 99.68 | 40.40 | 1.39 | 100.99 |
Analyte a | HPLC Analysis | LC–MS/MS Analysis | ||||||
---|---|---|---|---|---|---|---|---|
GGSGH–1 b | GGSGH–2 | GGSGH–1 | GGSGH–2 | |||||
Mean (mg/g) ± SD (×10−2) | RSD (%) | Mean (mg/g) ± SD (×10−2) | RSD (%) | Mean (mg/g) ± SD (×10−1) | RSD (%) | Mean (mg/g) ± SD (×10−1) | RSD (%) | |
1 | 0.89 ± 0.07 | 0.08 | 0.44 ± 0.14 | 0.31 | 3.47 ± 0.71 | 2.04 | 1.27 ± 0.08 | 0.66 |
2 | 2.38 ± 0.22 | 0.09 | 2.87 ± 3.87 | 1.35 | 3.90 ± 0.07 | 0.18 | 4.60 ± 1.23 | 2.67 |
3 | 0.35 ± 0.18 | 0.50 | 0.55 ± 0.29 | 0.53 | 0.35 ± 0.10 | 2.76 | 0.58 ± 0.06 | 1.07 |
4 | 1.64 ± 0.17 | 0.10 | 1.34 ± 0.22 | 0.16 | ND c | – | ND | – |
5 | 0.46 ± 0.20 | 0.44 | 0.41 ± 0.22 | 0.53 | 1.52 ± 0.66 | 4.36 | 1.45 ± 0.79 | 5.42 |
6 | 1.94 ± 0.66 | 0.34 | 1.39 ± 0.23 | 0.17 | 2.48 ± 0.85 | 3.44 | 1.79 ± 0.43 | 2.40 |
7 | 0.22 ± 0.14 | 0.64 | 0.19 ± 0.35 | 1.85 | 0.15 ± 0.01 | 0.91 | 0.12 ± 0.08 | 6.66 |
8 | 0.32 ± 0.12 | 0.37 | 0.25 ± 0.05 | 0.21 | 0.27 ± 0.03 | 0.94 | 0.21 ± 0.02 | 1.07 |
9 | 0.18 ± 0.03 | 0.19 | 0.13 ± 0.07 | 0.53 | ND | – | ND | – |
10 | 0.40 ± 0.26 | 0.64 | 0.22 ± 0.29 | 1.30 | 0.64 ± 0.12 | 1.95 | 0.37 ± 0.09 | 2.35 |
11 | 1.78 ± 0.15 | 0.08 | 0.43 ± 0.02 | 0.04 | 3.67 ± 0.37 | 1.01 | 0.99 ± 0.21 | 2.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Lee, M.-Y. Method Development and Validation for Simultaneous Analysis of Eleven Components for Quality Control of Geumgwesingihwan Using HPLC–DAD and UPLC–MS/MS. Separations 2022, 9, 213. https://doi.org/10.3390/separations9080213
Seo C-S, Lee M-Y. Method Development and Validation for Simultaneous Analysis of Eleven Components for Quality Control of Geumgwesingihwan Using HPLC–DAD and UPLC–MS/MS. Separations. 2022; 9(8):213. https://doi.org/10.3390/separations9080213
Chicago/Turabian StyleSeo, Chang-Seob, and Mee-Young Lee. 2022. "Method Development and Validation for Simultaneous Analysis of Eleven Components for Quality Control of Geumgwesingihwan Using HPLC–DAD and UPLC–MS/MS" Separations 9, no. 8: 213. https://doi.org/10.3390/separations9080213
APA StyleSeo, C. -S., & Lee, M. -Y. (2022). Method Development and Validation for Simultaneous Analysis of Eleven Components for Quality Control of Geumgwesingihwan Using HPLC–DAD and UPLC–MS/MS. Separations, 9(8), 213. https://doi.org/10.3390/separations9080213