A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials
Abstract
:1. Introduction
2. Fundamental Relations
3. Method of Solution
4. Error Estimation Algorithm
5. Numerical Examples
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saadatmandi, A.; Dehghan, M. Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numer. Methods Part. Differ. Equ. 2010, 26, 239–252. [Google Scholar] [CrossRef]
- Dehghan, M.; Shokri, A. A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Part. Differ. Equ. 2008, 24, 1080–1093. [Google Scholar] [CrossRef]
- El-Azab, M.S.; El-Gamel, M. A numerical algorithm for the solution of telegraph equations. Appl. Math. Comput. 2007, 109, 757–764. [Google Scholar] [CrossRef]
- Georges, R.; Pearce, J.A. Foundations and Industrial Applications of Microwave and Radio Frequency Fields Physical and Chemical Processes; Wiley: Chichester, UK, 1995. [Google Scholar]
- Feng, G.; Chi, C. Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 2007, 187, 1272–1276. [Google Scholar]
- Mohanty, R.K.; Jain, M.K.; George, K. On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 1996, 72, 421–431. [Google Scholar] [CrossRef]
- Dehghan, M.; Yousefi, S.A.; Lotfi, A. The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations. Int. J. Numer. Methods Biomed. Eng. 2011, 27, 219–231. [Google Scholar] [CrossRef]
- Tatari, M.; Haghighi, M. A generalized Laguerre–Legendre spectral collocation method for solving initial-boundary value problems. Appl. Math. Model. 2014, 38, 1351–1364. [Google Scholar] [CrossRef]
- Jiwari, R.; Pandit, S.; Mittal, R.C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 2012, 218, 7279–7294. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Mukesh, K.A.; Chaurasia, R.K. Reduced differential transform method to solve two and three dimensional second order hyperbolic telegraphic equations. J. King Saud Univ. Eng. Sci. 2014, 17. [Google Scholar] [CrossRef]
- Kurt, A. Fibonacci Polynomial Solutions of Linear Diferential, Integral and Integro-Diferential Equations. Master’s Thesis, Graduate School of Natural and Applied Sciences, Mugla, Mugla University, Merkez, Muğla, Turkey, 2012. [Google Scholar]
- Kurt, A.; Yalçınbaş, S.; Sezer, M. Fibonacci Collocation Method For Solving Linear Differential-Difference Equations. Math. Comput. Appl. 2013, 18, 448–458. [Google Scholar]
- Kurt, A.; Yalçınbaş, S.; Sezer, M. Fibonacci Collocation Method for Solving High-Order Linear Fredholm Integro-Differential-Difference Equations. Int. J. Math. Math. Sci. 2013, 2013. [Google Scholar] [CrossRef]
- Kurt Bahşı, A.; Şahin, N.; Sezer, M. A numerical algorithm with residual error estimation for solution of high-order Pantograph-type functional differential equations using Fibonacci polynomials. New Trends Math. Sci. 2015, 3, 90–102. [Google Scholar]
- Kurt Bahşı, A.; Yalçınbaş, S. Fibonacci collocation method with a residual error function to solve linear Volterra integro differential equations. New Trends Math. Sci. 2016, 4, 1–14. [Google Scholar] [CrossRef]
- Bülbül, B.; Sezer, M. Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. Int. J. Comput. Math. 2011, 88, 533–544. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş.; Şahin, N. Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method. Appl. Math. Comput. 2013, 220, 305–315. [Google Scholar] [CrossRef]
- Bülbül, B.; Sezer, M. A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation. Appl. Math. Lett. 2011, 24, 1716–1720. [Google Scholar] [CrossRef]
- Yüksel, G.; Sezer, M. A Chebyshev Series Approximation for Linear Second-Order Partial Differential Equations with Complicated Conditions. Gazi Univ. J. Sci. 2014, 26, 515–525. [Google Scholar]
- Isik, O.R.; Sezer, M.; Güney, Z. Bernstein series solution of linear second-order partial differential equations with mixed conditions. Math. Methods Appl. Sci. 2014, 37, 609–619. [Google Scholar] [CrossRef]
- Çevik, M. Application of Taylor Matrix Method to the Solution of Longitudinal Vibration of Rods. Math. Comput. Appl. 2010, 15, 334–343. [Google Scholar]
- Shaban, M.; Kazem, S.; Rad, J.A. A modification of the homotopy analysis method based on Chebyshev operational matrices. Math. Comput. Model. 2013, 57, 1227–1239. [Google Scholar] [CrossRef]
- Oliveira, F.A. Collacation and residual correction. Numer. Math. 1980, 36, 27–31. [Google Scholar] [CrossRef]
- Shahmorad, S. Numerical solution of general form linear Fredholm. Volterra integro differantial equations by the tau method with an error estimation. Appl. Math. Comput. 2005, 167, 1418–1429. [Google Scholar]
- Çelik, İ. Collacation method and residual correction using Chebyshev series. Appl. Math. Comput. 2006, 174, 910–920. [Google Scholar]
- Yousefi, S.A. Legendre multiwavelet Galerkin method for solving the hyperbolic telegraph equation. Numer. Methods Part. Differ. Equ. 2010, 26, 535–543. [Google Scholar] [CrossRef]
- Mittal, R.C.; Bhatia, R. Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 2013, 220, 496–506. [Google Scholar] [CrossRef]
Values | Taylor Matrix Method [16] | Legendre Multiwavelet [26] | Fibonacci Polynomial Solution | Corrected Fibonacci Polynomial Solution |
---|---|---|---|---|
Present Method | |||
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurt Bahşı, A.; Yalçınbaş, S. A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials. Math. Comput. Appl. 2016, 21, 15. https://doi.org/10.3390/mca21020015
Kurt Bahşı A, Yalçınbaş S. A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials. Mathematical and Computational Applications. 2016; 21(2):15. https://doi.org/10.3390/mca21020015
Chicago/Turabian StyleKurt Bahşı, Ayşe, and Salih Yalçınbaş. 2016. "A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials" Mathematical and Computational Applications 21, no. 2: 15. https://doi.org/10.3390/mca21020015
APA StyleKurt Bahşı, A., & Yalçınbaş, S. (2016). A New Algorithm for the Numerical Solution of Telegraph Equations by Using Fibonacci Polynomials. Mathematical and Computational Applications, 21(2), 15. https://doi.org/10.3390/mca21020015