Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD Free Convection Flow of Nanofluids over Flat Plates
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Dimensionless Equations for the Vertical Plate
2.2. Dimensionless Equations for the Horizontal Plate
3. Solution Procedure
3.1. Numerical Solution for the Vertical Plate
3.2. Numerical Solution for the Horizontal Plate
4. Results and Discussion
5. Conclusions
- The Ag–water nanofluid has higher velocity and temperature profiles, skin friction coefficient, and surface temperature than the Cu–water nanofluid. However, the reverse is true for the rate of heat transfer.
- Heat generation, thermal radiation, nanoparticle volume fraction and magnetic field parameter enhance the velocity of the nanofluid far from the wall. However, an increase in the magnetic field parameter significantly decreases the velocity of the nanofluid near the wall.
- Increasing the heat generation, thermal radiation, nanoparticle volume fraction and magnetic field parameter improves the temperature distribution and the surface temperature while reducing the rate of heat transfer.
- The overlapping multi-domain bivariate spectral quasilinearisation method holds great potential for solving highly nonlinear conjugate heat transfer problems since the method gives accurate results using a minimal number of grid points.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
External uniform magnetic field | |
Magnetic strength | |
p | Pressure |
Rayleigh number | |
g | Gravitational acceleration |
k | Thermal conductivity (W/m K) |
Specific heat capacity | |
T | Fluid temperature (K or C ) |
Heat flux | |
f | Dimensionless stream function |
Velocity component in Cartesian coordinate | |
Constant temperature | |
Ambient temperature | |
Rate of heat generation | |
Radiative heat flux | |
M | Magnetic field parameter |
Prandtl number | |
Radiation parameter | |
Q | Heat generation parameter |
Greek Symbols | |
Scaled boundary layer coordinate | |
Streamwise coordinate | |
Electrical conductivity (S m) | |
Thermal diffusivity ms | |
Dynamic viscosity kg ms | |
Dimensionless temperature | |
Nanoparticle volume fraction parameter | |
Stream function ms | |
Density of the fluid ( Kg/m) | |
Thermal expansion coefficient | |
Kinematic viscosity ms | |
Subscripts | |
Nanofluid phase | |
f | Fluid phase |
s | Solid phase |
References
- Chang, C.L. Buoyancy and wall conduction effects on forced convection of micropolar fluid flow along a vertical slender hollow circular cylinder. Int. J. Heat Mass Transf. 2006, 49, 4932–4942. [Google Scholar] [CrossRef]
- Miyamoto, M.; Sumikawa, J.; Akiyoshi, T.; Nakamura, T. Effects of axial heat conduction in a vertical flat plate on free convection heat transfer. Int. J. Heat Mass Transf. 1980, 23, 1545–1553. [Google Scholar] [CrossRef]
- Sparrow, E.M.; Chyu, M.K. Conjugated forced convection-conduction analysis of heat transfer in a plate fin. ASME J. Heat Transf. 1982, 104, 204–206. [Google Scholar] [CrossRef]
- Merkin, J.H.; Pop, I. A note on the free convection boundary layer on a horizontal circular cylinder with constant heat flux. Wärme Stoffübertrag. 1988, 22, 79–81. [Google Scholar] [CrossRef]
- Pop, I.; Lesnic, D.; Ingham, D.B. Conjugate mixed convection on a vertical surface in a porous medium. Int. J. Heat Mass Transf. 1995, 38, 1517–1525. [Google Scholar] [CrossRef]
- Luna, E.; Trevino, C.; Higuera, F.J. Conjugate natural convection heat transfer between two fluids seperated by a horizontal wall: Steady-state analysis. Heat Mass Transf. 1996, 31, 353–358. [Google Scholar] [CrossRef]
- Vasquez, R.S.; Bula, A.J. Uncoupling the Conjugate Heat Transfer Problem in a Horizontal Plate Under the Influence of a Laminar Flow, Heat Transfer. In Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 15–21 November 2003; Volume 1, pp. 11–18. [Google Scholar]
- Hajmohammadi, M.R.; Nourazar, S.S. Conjugate Forced Convection Heat Transfer From a Heated Flat Plate of Finite Thickness and Temperature-Dependent Thermal Conductivity. Heat Transf. Eng. 2014, 35, 863–874. [Google Scholar] [CrossRef]
- Yu, W.S.; Lin, H.T. Conjugate problems of conduction and free convection on vertical and horizontal flat plates. Int. J. Heat Mass Transf. 1993, 36, 1303–1313. [Google Scholar] [CrossRef]
- Hsiao, K.L. Conjugate heat transfer for free convection along vertical plate fin. J. Therm. Sci. 2010, 19, 337–345. [Google Scholar] [CrossRef]
- Azim, N.H.M.; Chowdhury, M.K. MHD-conjugate free convection from an isothermal horizontal circular cylinder with Joule heating and heat generation. J. Comput. Meth. Phys. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Azim, M.; Mamun, A.; Rahman, M. Viscous Joule heating MHD-conjugate heat transfer for a vertical flat plate in the presence of heat generation. Int. J. Commun. Heat. Mass. Transf. 2010, 37, 666–674. [Google Scholar] [CrossRef]
- Kaya, A. Effects of Conjugate Heat Transfer on Steady MHD Mixed Convective Heat Transfer Flow over a Thin Vertical Plate Embedded in a Porous Medium with High Porosity. Math. Prob. Eng. 2012, 2012, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A. The effect of conjugate heat transfer on MHD mixed convection about a vertical slender hollow cylinder. Commun. Nonlinear Sci. Numer. Simul. 2012, 16, 1905–1916. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Azim, N.H.M.A.; Maleque, M.A. Combined effect of conduction and viscous dissipation on MHD free convection flow along a vertical flat plate. J. Naval Archit. Mar. Eng. 1970, 4, 87–98. [Google Scholar] [CrossRef]
- Mamun, A.A.; Chowdhury, Z.R.; Azim, M.A.; Molla, M.M. MHD-conjugate heat transfer analysis for a vertical flat plate in the presence of viscous dissipation and heat generation. Int. Commun. Heat Mass Transf. 2008, 35, 1275–1280. [Google Scholar] [CrossRef]
- Azim, N.H.M.A. Effects of Viscous Dissipation and Heat Generation on MHD Conjugate Free Convection Flow from an Isothermal Horizontal Circular Cylinder. SOP Trans. Appl. Phys. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Malvandi, A.; Hedayati, F.; Nobari, M.R.H. An HAM analysis of stagnation-point flow of nanofluid over a porous stretching sheet with heat generation. J. Appl. FluidMech. 2014, 7, 135–145. [Google Scholar]
- Jafarian, B.; Hajipour, M.; Khademi, R. Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media. Trans. Phenom. Nano Micro Scales 2016, 4, 1–10. [Google Scholar]
- Nimmagadda, R.; Venkatasubbaiah, K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur. J. Mech. B Fluids. 2015, 52, 19–27. [Google Scholar] [CrossRef]
- Patrulescu, F.; Grosan, T. Conjugate heat transfer in a vertical channel filled with a nanofluid adjacent to a heat generating solid domain. Rev. Anal. Numer. Theor. Approx. 2010, 36, 141–149. [Google Scholar]
- Zahan, I.; Alim, M.A. Effect of Conjugate heat transfer on flow of nanofluid in a rectangular enclosure. Int. J. Heat Tech. 2008, 36, 397–405. [Google Scholar] [CrossRef]
- Malvandi, A.; Hedayati, F.; Ganji, D.D. Fluid and Heat Transfer of Nanofluids over a flat plate with conjugate heat transfer. Trans. Phenom. Nano. Micro Scales 2014, 2, 108–117. [Google Scholar]
- Zahan, I.; Nasrin, R.; Alim, M.A. MHD effect on conjugate heat transfer in a nanofluid filled rectangular enclosure. Int. J. Petrochem. Sci. Eng. 2018, 3, 114–123. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Sheremet, M.A.; Chamkha, A.J.; Hashim, I. Conjugate natural convection of Al2O3-water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int. J. Mech. Sci. 2018, 136, 200–219. [Google Scholar] [CrossRef]
- Takher, H.S.; Gorla, R.S.R.; Soundalgekar, V.M. Short communication radiation effects on MHD free convection flow of a gas past a semi-finite vertical plate. J. Numer. Meth. Heat Fluid Flow. 1996, 6, 77–83. [Google Scholar] [CrossRef]
- AboEldahab, E.M. Radiation effects on heat transfer in an electrically conducting fluid at a stretching surface with a uniform free stream. J. Phys. D Appl. Phys. 2000, 33, 3180. [Google Scholar] [CrossRef]
- El-Naby, A.; Elbarbary, E.M.E.; Abdelazem, N.Y. Finite difference solution of radiation effects on MHD unsteady free convection flow over vertical plate with variable surface temperature. J. Appl. Math. 2003, 2, 65–86. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Mujtaba, M.; Quadri, A.; Issa, C. Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source/sink. Heat Mass Transf. 2003, 3, 305–312. [Google Scholar] [CrossRef]
- Mbeledogu, I.U.; Amakiri, A.R.C.; Ogulu, A. Unsteady MHD free convective flow of a compressible fluid past a moving vertical plate in the presence of radiative heat transfer. Int. J. Heat Mass Transf. 2007, 50, 1668–1674. [Google Scholar] [CrossRef]
- Ali, M.M.; Mamun, A.A.; Maleque, M.A. Radiation and heat generation effects on viscous Joule heating MHD-conjugate heat transfer for a vertical flat plate. Can. J. Phys. 2014, 92, 509–521. [Google Scholar] [CrossRef]
- Elazem, N.Y.A.; Ebaid, A.; Aly, E.H. Radiation effects of MHD on Cu-water and Ag-water nanofluids flow over a stretching sheet: Numerical study. J. Appl. Comput. Math. 2015, 4, 235. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Babu, M.J.; Sandeep, N.; Krishna, P.M. Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium. Chem. Process Eng. Res. 2015, 6, 31–42. [Google Scholar]
- Magagula, V.M.; Motsa, S.S.; Sibanda, P. A Multi-domain Bivariate Pseudospectral Method for Evolution Equations. Int. J. Comput. Meth. 2017, 14, 1750041. [Google Scholar] [CrossRef]
- Motsa, S.S.; Magagula, V.M.; Sibanda, P. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations. Sci. World J. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Springer: Berlin, Germany; New York, NY, USA, 1989. [Google Scholar]
- Hayat, T.; Kiran, A.; Imtiaz, M.; Alsaedi, A. Hydromagnetic mixed convection flow of copper and silver water nanofluids due to a curved stretching sheet. Results Phys. 2016, 6, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Raza, J.; Rohni, A.M.; Omar, Z. MHD flow and heat transfer of Cu-water nanofluid in a semi porous channel with stretching walls. Int. J. Heat Mass Transf. 2016, 103, 336–340. [Google Scholar] [CrossRef]
- Prasad, P.D.; Kumar, R.V.M.S.S.; Varma, S.V.K. Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shaims Eng. J. 2018, 9, 801–813. [Google Scholar] [CrossRef] [Green Version]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin, Germany, 1988. [Google Scholar]
- Trefethen, L.N. Spectral Methods in Matlab; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Bellman, R.E.; Kalaba, R.E. Quasilinearization and Nonlinear Boundary Value Problems; RAND Corporation: Santa Monica, CA, USA, 1965. [Google Scholar]
- Shahzad, F.; Sagheer, M.; Hussain, S. Numerical simulation of MHD Jeffrey nanofluid flow and heat transfer over a stretching sheet considering Joule heating and viscous dissipation. AIP Adv. 2018, 8, 065316. [Google Scholar] [CrossRef]
Base Fluid | Nanoparticles | ||
---|---|---|---|
Physical Properties | Water | Copper (Cu) | Silver (Ag) |
4179 | 385 | 235 | |
997.1 | 8933 | 10,500 | |
0.613 | 401 | 429 | |
0.05 | |||
21 |
Yi and Lin [9] | MD-BSQLM | OMD-BSQLM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Vertical plate | ||||||||||
12 | 0.001 | 54.745 | 1.3345 | 54.7463521 | 1.3344356 | 100 | 54.7463521 | 1.3344356 | 20 | |
12 | 0.01 | 16.929 | 1.3759 | 16.9295516 | 1.3758562 | 100 | 16.9295516 | 1.3758562 | 20 | |
12 | 0.1 | 5.2502 | 1.4824 | 1.2502342 | 1.4823999 | 100 | 1.2502342 | 1.4823999 | 20 | |
15 | 0.7 | 2.3123 | 1.6132 | 2.3123480 | 1.6129166 | 100 | 2.3123480 | 1.6129166 | 20 | |
15 | 7 | 1.5748 | 1.6520 | 1.5743519 | 1.6518940 | 100 | 1.5743519 | 1.6518940 | 20 | |
Horizontal plate | ||||||||||
12 | 0.001 | 47.166 | 1.2258 | 47.2048673 | 1.2257703 | 100 | 47.2048673 | 1.2257703 | 20 | |
12 | 0.01 | 14.549 | 1.2720 | 14.5501264 | 1.2720149 | 100 | 14.5501264 | 1.2720149 | 20 | |
12 | 0.1 | 4.5424 | 1.3944 | 4.5423369 | 1.3943724 | 100 | 4.5423369 | 1.3943724 | 20 | |
15 | 0.7 | 2.0205 | 1.5583 | 2.0757356 | 1.5530446 | 100 | 2.0757356 | 1.5530446 | 20 | |
15 | 7 | 1.3622 | 1.6410 | 1.3618515 | 1.6413464 | 100 | 1.3618515 | 1.6413464 | 20 |
Vertical Plate | ||||||
-WaterNanofluid | -WaterNanofluid | |||||
0.1 | 3.1502197 | 0.8886284 | 2.2102538 | 3.4901209 | 0.8859706 | 2.2335515 |
0.2 | 2.9783142 | 0.7836947 | 2.0353093 | 3.2954705 | 0.7791175 | 2.0526246 |
0.3 | 2.8055275 | 0.6874567 | 1.8661087 | 3.1006493 | 0.6816661 | 1.8784674 |
0.4 | 2.6354158 | 0.6013814 | 1.7060758 | 2.9096575 | 0.5949833 | 1.7145224 |
0.5 | 2.4711001 | 0.5260086 | 1.5576812 | 2.7259292 | 0.5194660 | 1.5631829 |
0.6 | 2.3149074 | 0.4610286 | 1.4222383 | 2.5519493 | 0.4546541 | 1.4256179 |
0.7 | 2.1681887 | 0.4055214 | 1.2999488 | 2.3890815 | 0.3994990 | 1.3018590 |
0.8 | 2.0312907 | 0.3582374 | 1.1901080 | 2.2375714 | 0.3526578 | 1.1910409 |
0.9 | 1.9034739 | 0.3177938 | 1.0912546 | 2.0964877 | 0.3126913 | 1.0915734 |
1 | 1.7808520 | 0.2824192 | 1.0000000 | 1.9615149 | 0.2778150 | 1.0000000 |
Horizontal plate | ||||||
0.1 | 2.0929952 | 0.8768285 | 2.2730937 | 2.1709163 | 0.8703743 | 2.3299696 |
0.2 | 1.9147577 | 0.7603163 | 2.0914784 | 1.9651128 | 0.7490266 | 2.1346661 |
0.3 | 1.7431456 | 0.6537272 | 1.9129913 | 1.7696198 | 0.6393135 | 1.9443078 |
0.4 | 1.5857671 | 0.5595096 | 1.7422446 | 1.5936813 | 0.5435780 | 1.7638210 |
0.5 | 1.4492674 | 0.4788634 | 1.5831252 | 1.4450572 | 0.4627300 | 1.5971702 |
0.6 | 1.3381426 | 0.4116324 | 1.4381961 | 1.3286458 | 0.3962184 | 1.4467514 |
0.7 | 1.2542162 | 0.3565745 | 1.3084563 | 1.2459879 | 0.3424128 | 1.3132268 |
0.8 | 1.1970874 | 0.3118610 | 1.1934924 | 1.1960098 | 0.2991830 | 1.1957896 |
0.9 | 1.1656347 | 0.2755951 | 1.0917901 | 1.1770321 | 0.2644615 | 1.0925707 |
1 | 1.1674280 | 0.2464322 | 1.0000000 | 1.2005270 | 0.2370678 | 1.0000000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkhatshwa, M.; Motsa, S.; Sibanda, P. Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD Free Convection Flow of Nanofluids over Flat Plates. Math. Comput. Appl. 2019, 24, 75. https://doi.org/10.3390/mca24030075
Mkhatshwa M, Motsa S, Sibanda P. Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD Free Convection Flow of Nanofluids over Flat Plates. Mathematical and Computational Applications. 2019; 24(3):75. https://doi.org/10.3390/mca24030075
Chicago/Turabian StyleMkhatshwa, Musawenkhosi, Sandile Motsa, and Precious Sibanda. 2019. "Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD Free Convection Flow of Nanofluids over Flat Plates" Mathematical and Computational Applications 24, no. 3: 75. https://doi.org/10.3390/mca24030075
APA StyleMkhatshwa, M., Motsa, S., & Sibanda, P. (2019). Overlapping Multi-Domain Spectral Method for Conjugate Problems of Conduction and MHD Free Convection Flow of Nanofluids over Flat Plates. Mathematical and Computational Applications, 24(3), 75. https://doi.org/10.3390/mca24030075