Decision Making Approach under Pythagorean Dombi Fuzzy Graphs for Selection of Leading Textile Industry
Abstract
:1. Introduction
2. Certain Pythagorean Dombi Fuzzy Graphs
2.1. Direct Product of Pythagorean Dombi Fuzzy Graphs
- (i)
- for all
- (ii)
- for all and .
2.2. Cartesian Product of Pythagorean Dombi Fuzzy Graphs
- (i)
- for all
- (ii)
- for all and
- (iii)
- for all and
2.3. Semi-Strong Product of Pythagorean Dombi Fuzzy Graphs
- (i)
- for all
- (ii)
- for all and
- (iii)
- for all and .
2.4. Strong Product of Pythagorean Dombi Fuzzy Graphs
- (i)
- for all
- (ii)
- for all and
- (iii)
- for all and
- (iv)
- for all and .
2.5. Composition of Pythagorean Dombi Fuzzy Graphs
- (i)
- for all
- (ii)
- for all and
- (iii)
- for all and
- (iv)
- for all and
3. Numerical Approach
3.1. Selection of a Leading Textile Industry
- ;
Algorithm 1 The algorithm for the selection of a leading textile industry. |
INPUT: A discrete set of feasible alternatives a set of conflicting criteria in order to achieve the target with weight vector , and construction of PFPR corresponding to each considered criteria. OUTPUT: The selection of the optimal alternative.
|
3.2. Comparative Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Hamacher, H. On Logical Aggregations of Non-Binar Explicit Decision Criteria; Rita, G., Ed.; Fischer Verlag: Frankfurt, Germany, 1978. [Google Scholar]
- Kuwagaki, A. Sur l’équation fonctionnelle f(x + y) = R{f(x), f(y)}. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 1950, 26, 139–144. Available online: https://projecteuclid.org/download/pdf_1/euclid.kjm/1250777986 (accessed on 13 December 2019). [CrossRef]
- Menger, K. Statistical metrics. J. Natl. Acad. Sci. 1942, 28, 535–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, B.; Sklar, S. Probabilistic Metric Spaces; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Alsina, C.; Trillas, E.; Valverde, L. On some logical connectives for fuzzy sets theory. J. Math. Anal. Appl. 1983, 93, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Klement, P.E.; Mesiar, R.; Pap, E. Triangular Norms; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Hamacher, H. Logical combinations of fuzzy statements and their relative valuation functions. Cybern. Syst. Res. 1978, 3, 276–288. [Google Scholar]
- Dubois, D.; Ostasiewicz, W.; Prade, H. Fuzzy Sets: History and Basic Notions; Springer: Boston, MA, USA, 2000. [Google Scholar]
- Rosenfeld, A. Fuzzy graphs. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes; Zadeh, L.A., Fu, K.S., Shimura, M., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 77–95. [Google Scholar]
- Mordeson, J.N.; Peng, C.S. Operations on fuzzy graphs. Inf. Sci. 1994, 79, 159–170. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Shannon, A.; Atanassov, K.T. A first step to a theory of intuitioistic fuzzy graphs. In Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, 28–30 September 1994; pp. 59–61. [Google Scholar]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multi-criteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y. Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
- Akram, M.; Dudek, W.A.; Ilyas, F. Group decision-making based on Pythagorean fuzzy TOPSIS method. Int. J. Intell. Syst. 2019. [Google Scholar] [CrossRef]
- Akram, M.; Ilyas, F.; Garg, H. Multi-criteria group decision making based on ELECTRIC I method in Pythagorean fuzzy information. Soft Comput. 2019. [Google Scholar] [CrossRef]
- Rangasamy, P.; Palaniappan, N. Some operations on intuitionistic fuzzy sets of second type. Notes Intuitionistic Fuzzy Sets 2003, 10, 1–19. [Google Scholar]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Peng, X.; Selvachandran, G. Pythagorean fuzzy set: State of the art and future directions. Artifical Intell. Rev. 2017. [Google Scholar] [CrossRef]
- Garg, H. A new exponential operational laws and their aggregation operators of interval-valued Pythagorean fuzzy information. Int. J. Intell. Syst. 2018, 33, 653–683. [Google Scholar] [CrossRef]
- Garg, H. Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment. Int. J. Intell. Syst. 2018, 33, 687–712. [Google Scholar] [CrossRef]
- Garg, H. Linguistic Pythagorean fuzzy sets and its applications in multi attribute decision making process. Int. J. Intell. Syst. 2018, 33, 1234–1263. [Google Scholar] [CrossRef]
- Garg, H. Hesitant Pythagorean fuzzy sets and their aggregation operators in multiple-attribute decision-making. Int. J. Uncertain. Quantif. 2018, 8, 267–289. [Google Scholar] [CrossRef]
- Garg, H. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. Int. J. Intell. Syst. 2016, 31, 1234–1253. [Google Scholar] [CrossRef]
- Naz, S.; Ashraf, S.; Akram, M. A novel approach to decision-making with Pythagorean fuzzy information. Mathematics 2018, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Merigo, J.M.; Sahni, M. Pythagorean fuzzy graphs: Some results. arXiv 2018, arXiv:1806.06721v1. [Google Scholar]
- Akram, M.; Naz, S. Energy of Pythagorean fuzzy graphs with applications. Mathematics 2018, 6, 136. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Habib, A.; Ilyas, F.; Dar, J.M. Specific types of Pythagorean fyzzy graphs and application to decision-making. Math. Comput. Appl. 2018, 23, 42. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Dar, J.M.; Naz, S. Certain graphs under Pythagorean fuzzy environment. Complex Intell. Syst. 2019, 5, 127–144. [Google Scholar] [CrossRef]
- Akram, M.; Dar, J.M.; Farooq, A. Planar graphs under Pythagorean fuzzy environment. Mathematics 2018, 6, 278. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Ilyas, F.; Saeid, A.B. Certain notions of Pythagorean fuzzy graphs. J. Intell. Fuzzy Syst. 2019, 36, 5857–5874. [Google Scholar] [CrossRef]
- Naz, S.; Rashmanlou, H.; Malik, M.A. Operations on single-valued neutrosophic graphs with application. J. Intell. Fuzzy Syst. 2017, 32, 2137–2151. [Google Scholar] [CrossRef]
- Akram, M.; Habib, A. q-Rung picture fuzzy graphs: A creative view on regularity with applications. J. Appl. Math. Comput. 2019, 61, 235–280. [Google Scholar] [CrossRef]
- Habib, A.; Akram, M.; Farooq, A. q-Rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 2019, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Habib, A.; Koam, A.N. A novel description on edge-regular q-rung picture fuzzy graphs with application. Symmetry 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Dombi, J. A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Dombi, J. Towards a general class of operators for fuzzy systems. IEEE Trans. Fuzzy Syst. 2008, 16, 477–484. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J. Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision-making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Dombi aggregation operators of neutrosophic cubic sets for multiple attribute decision-making. Algorithms 2018, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Jana, C.; Pal, M.; Wang, J. Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process. J. Ambient Intell. Humaniz. Comput. 2018. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2018, 69, 1–24. [Google Scholar] [CrossRef]
- He, X. Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators. Nat. Hazards 2018, 90, 1153–1175. [Google Scholar] [CrossRef]
- Akram, M.; Dudek, W.A.; Dar, J.M. Pythagorean Dombi fuzzy aggregation operators with application in multi-criteria decision-making. Int. J. Intell. Syst. 2019. [Google Scholar] [CrossRef]
- Ashraf, S.; Naz, S.; Kerre, E.E. Dombi fuzzy graphs. Fuzzy Inf. Eng. 2018, 10, 58–79. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Dar, J.M.; Naz, S. Pythagorean Dombi fuzzy graphs. Complex Intell. Syst. 2019, 1–26. [Google Scholar] [CrossRef] [Green Version]
Q | ||||
---|---|---|---|---|
Q | ||||
---|---|---|---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.; Mohsan Dar, J.; Shahzadi, S. Decision Making Approach under Pythagorean Dombi Fuzzy Graphs for Selection of Leading Textile Industry. Math. Comput. Appl. 2019, 24, 102. https://doi.org/10.3390/mca24040102
Akram M, Mohsan Dar J, Shahzadi S. Decision Making Approach under Pythagorean Dombi Fuzzy Graphs for Selection of Leading Textile Industry. Mathematical and Computational Applications. 2019; 24(4):102. https://doi.org/10.3390/mca24040102
Chicago/Turabian StyleAkram, Muhammad, Jawaria Mohsan Dar, and Sundas Shahzadi. 2019. "Decision Making Approach under Pythagorean Dombi Fuzzy Graphs for Selection of Leading Textile Industry" Mathematical and Computational Applications 24, no. 4: 102. https://doi.org/10.3390/mca24040102
APA StyleAkram, M., Mohsan Dar, J., & Shahzadi, S. (2019). Decision Making Approach under Pythagorean Dombi Fuzzy Graphs for Selection of Leading Textile Industry. Mathematical and Computational Applications, 24(4), 102. https://doi.org/10.3390/mca24040102