Isogeometric Analysis for Fluid Shear Stress in Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Geometry
2.2. Governing Equations
3. Mathematical Formulation
3.1. The Darcy–Brinkman Equation
3.2. Isogeometric Discretization
3.3. Isogeometric Conforming Spaces
3.4. The Variational Formulation Discretization
4. Numerical Results
4.1. Case 1
4.2. Case 2
4.3. Case 3
4.4. Case 4
4.5. Case 5
4.6. Case 6
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Huang, Q.; Hu, X.; He, W.; Zhao, Y.; Hao, S.; Wu, Q.; Li, S.; Zhang, S.; Shi, M. Fluid shear stress and tumor metastasis. Am. J. Cancer Res. 2018, 8, 763–777. [Google Scholar] [PubMed]
- Brooks, D.E. The biorheology of tumor cells. Biorheology 1984, 21, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Shieh, A.; Swartz, M. Regulation of tumor invasion by interstitial fluid flow. Phys. Biol. 2011, 8, 015012. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, J.; Hughes, T.; Bazilevs, Y. Isogeometric Analysis: Toward Integration of CAD and FEA; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chen, C.; Malkus, D.; Vanderby, R. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Biorheology 1998, 35, 103–118. [Google Scholar] [CrossRef]
- Hu, X.; Adamson, R.H.; Liu, B.; Curry, F.E.; Weinbaum, S. Starling forces that oppose filtration after tissue oncotic pressure is increased. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, 1724–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lartigue, J. Genomic Complexity Stifles Targeted Advances in Colorectal Cancer. OncologyLive 2016, 17. Available online: https://www.onclive.com/publications/Oncology-live/2016/Vol-17-No-4/genomic-complexity-stifles-targeted-advances-in-colorectal-cancer (accessed on 26 December 2019).
- Ng, C.; Swartz, M. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.L.; Kohles, S.S.; Thielke, R.J.; Chen, C.; Vanderby, R., Jr. Interstitial fluid flow in tendons or ligaments: A porous medium finite element simulation. Med. Biol. Eng. Comput. 1997, 35, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Ding, G.-H. Interstitial fluid flow: Simulation of mechanical environment of cells in the interosseous membrane. Acta Mech. Sin. 2011, 27, 602–610. [Google Scholar] [CrossRef]
- Girault, V.; Raviart, P. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms; Springer Publishing Company, Incorporated: Berlin, Germany, 2011. [Google Scholar]
- Falco, C.; Reali, A.; Vázquez, R. GeoPDEs: A research tool for Isogeometric Analysis of PDEs. Adv. Eng. Softw. 2008, 42, 1020–1034. [Google Scholar] [CrossRef]
- Durlofsky, L.; Brady, J.F. Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 1987, 30, 3329–3341. [Google Scholar] [CrossRef]
- Pnueli, D.; Gutfinger, C. Fluid Mechanics; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Piegl, L.; Tiller, W. The NURBS Book; Springer: Berlin, Germany, 1997. [Google Scholar]
- Hosseini, B.; Möller, M.; Turek, S. Isogeometric Analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements. Appl. Math. Comput. 2015, 267, 264–281. [Google Scholar] [CrossRef]
- Buffa, A.; de Falco, C.; Sangalli, G. IsoGeometric Analysis: Stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 2011, 65, 1407–1422. [Google Scholar] [CrossRef]
- Evans, J.; Hughes, T. Isogeometric divergence-conforming b-splines for the Darcy–Stokes–Brinkman equations. Math. Models Methods Appl. Sci. 2013, 23, 671–741. [Google Scholar] [CrossRef]
- Vázquez, R. A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Comput. Math. Appl. 2008, 72, 523–554. [Google Scholar] [CrossRef]
- Dafni, H.; Israely, T.; Bhujwalla, Z.M.; Benjamin, L.E.; Neeman, M. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain. Cancer Res. 2002, 62, 6731–6739. [Google Scholar] [PubMed]
- Shi, Z.; Tarbell, J. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 2011, 39, 1608–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.A. Isogeometric Analysis for Fluid Shear Stress in Cancer Cells. Math. Comput. Appl. 2020, 25, 19. https://doi.org/10.3390/mca25020019
Rodrigues JA. Isogeometric Analysis for Fluid Shear Stress in Cancer Cells. Mathematical and Computational Applications. 2020; 25(2):19. https://doi.org/10.3390/mca25020019
Chicago/Turabian StyleRodrigues, José A. 2020. "Isogeometric Analysis for Fluid Shear Stress in Cancer Cells" Mathematical and Computational Applications 25, no. 2: 19. https://doi.org/10.3390/mca25020019
APA StyleRodrigues, J. A. (2020). Isogeometric Analysis for Fluid Shear Stress in Cancer Cells. Mathematical and Computational Applications, 25(2), 19. https://doi.org/10.3390/mca25020019