Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration
Abstract
:1. Introduction
1.1. General Context
1.2. Material and Magnetocaloric Effect Modeling
1.3. AMRR Device
2. Multi-Physics Modeling of the AMRR
2.1. Preamble
2.2. Thermo-Fluidic Modeling
2.2.1. 1-D Thermo-Fluidic Modeling
2.2.2. 2-D Thermo-Fluidic Modeling
2.3. Magneto-Thermo-Fluidic Modeling
2.3.1. 1-D Magneto-Thermo-Fluidic Modeling
- A 3-D magnetostatic model solved with a FEM to determine the magnetic field and the magnetic flux density in the Gd
- A 1-D magnetocaloric model to calculate the thermal power density in the Gd during the magnetic field variation.
- A 1-D thermo-fluidic model solved with the FDM to describe the thermal behavior of the fluid and the material.
- A 3-D model on COMSOL Multiphysics® to determine the internal and external magnetic fields. The homogeneity for the external field was investigated, and the demagnetization effect for the internal field was considered.
- A 3-D steady-state model created and solved with COMSOL Multiphysics® to study the ‘parasitic’ heat transfer.
- A 1-D transient model of the AMRR cycle using the results of the two models described above.
2.3.2. 2-D Magneto-Thermo-Fluidic Modeling
2.3.3. 3-D Magneto-Thermo-Fluidic Modeling
3. Discussions and Prospects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coulomb, D.; Dupont, J.; Morlet, V. The Impact of the Refrigeration Sector on the Climate Change; International Institute of Refrigeration: Paris, France, 2017. [Google Scholar]
- Domanski, P.A.; Brignoli, R.; Brown, J.S.; Kazakov, A.F.; McLinden, M.O. Low-GWP Refrigerants for Medium and High-Pressure Applications. Int. J. Refrig. 2017, 84, 198–209. [Google Scholar] [CrossRef]
- McLinden, M.O.; Brown, J.S.; Brignoli, R.; Kazakov, A.F.; Domanski, P.A. Limited Options for Low-Global-Warming-Potential Refrigerants. Nat. Commun. 2017, 8, 9. [Google Scholar] [CrossRef]
- Lebouc, A.; Allab, F.; Fournier, J.-M.; Yonnet, J.-P. Réfrigération magnétique. Techniques de l’Ingénieur 2005, 28, 16. [Google Scholar]
- Gilbert, W. On the Loadstone and Magnetic Bodies and on the Great Magnet the Earth; Ferris Bros.: New York, NY, USA, 1893. [Google Scholar]
- Warburg, E. Magnetische Untersuchungen. Annalen Der Physik 1881. [Google Scholar] [CrossRef] [Green Version]
- Weiss, P.; Piccard, A. Le phénomène magnétocalorique. J. Phys. Theor. Appl. 1917, 7, 103–109. [Google Scholar] [CrossRef]
- Debye, P. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Annalen Der Physik 1926, 386, 1154–1160. [Google Scholar] [CrossRef]
- Giauque, W.F.; MacDougall, D.P. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 1933, 43, 768. [Google Scholar] [CrossRef]
- Brown, G.V. Magnetic Heat Pumping near Room Temperature. J. Appl. Phys. 1976, 47, 3673–3680. [Google Scholar] [CrossRef] [Green Version]
- Gschneidner, K.A.; Pecharsky, V.K. Thirty Years of near Room Temperature Magnetic Cooling: Where We Are Today and Future Prospects. Int. J. Refrig. 2008, 31, 945–961. [Google Scholar] [CrossRef] [Green Version]
- Tishin, A.M.; Spichkin, Y.I. Recent Progress in Magnetocaloric Effect: Mechanisms and Potential Applications. Int. J. Refrig. 2014, 37, 223–229. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy Applications of Magnetocaloric Materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Chemical Elements. Available online: https://images-of-elements.com/gadolinium.php (accessed on 1 March 2021).
- Home-Edgetech Industries (A worldwide materials supplier). Available online: https://www.edge-techind.com/Products/Rare-Earth-Elements/Gadolinium/Gadolinium-Metal-657-1.html (accessed on 1 March 2021).
- Barclay, J.A. The Theory of an Active Magnetic Regenerative Regenerator; Los Alamos National Lab.: Los Alamos, NM, USA, 1983.
- Aprea, C.; Greco, A.; Maiorino, A. A numerical analysis of an active magnetic regenerative cascade system. Int. J. Energy Res. 2011, 35, 177–188. [Google Scholar] [CrossRef]
- Nielsen, K.K.; Tusek, J.; Engelbrecht, K.; Schopfer, S.; Kitanovski, A.; Bahl, C.R.H.; Smith, A.; Pryds, N.; Poredos, A. Review on Numerical Modeling of Active Magnetic Regenerators for Room Temperature Applications. Int. J. Refrig. 2011, 34, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Plait, A. Modélisation Multiphysique des Régénérateurs Magnétocaloriques. Ph.D. Thesis, Université Bourgogne Franche-Comté, Belfort, France, 2019. [Google Scholar]
- Teyber, R.; Trevizoli, T.V.; Christiaanse, T.V.; Govindappa, P.; Niknia, I.; Rowe, A. Experimental evaluation of two-material active magnetic regenerators. In Proceedings of the Seventh IIF-IIR International Conference on Magnetic Refrigeration at Room Temperature, Turin, Italy, 11–14 September 2016. [Google Scholar]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mat. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Ram, N.R.; Prakash, M.; Naresh, U.; Kumar, N.S.; Sarmash, T.S.; Subbarao, T.; Kumar, R.J.; Kumar, G.R.; Naidu, K.C.B. Review on Magnetocalric Effect and Materials. J. Supercond. Novel Magn. 2018, 31, 1971–1979. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneider, K.A., Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78. [Google Scholar] [CrossRef]
- Hirano, N. Development of Magnetic Refrigerator for Room Temperature Application. AIP Conf. Proc. 2002, 613, 1027–1034. [Google Scholar]
- Tušek, J.; Kitanovski, A.; Zupan, S.; Prebil, I.; Poredos, A. A comprehensive experimental analysis of gadolinium active magnetic regenerators. Appl. Therm. Eng. 2013, 53, 57–66. [Google Scholar] [CrossRef]
- Sarlah, A.; Poredos, A. Regenerator for Magnetic Cooling in Shape of Honeycomb. In Proceedings of the International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27–30 September 2005; pp. 27–30. [Google Scholar]
- Mira, A. Modélisation et Conception Optimale d’un Système de Réfrigération Magnétocalorique—Application à La Réfrigération Automobile. Ph.D. Thesis, Université de Franche-Comté, Belfort, France, 2015. [Google Scholar]
- Richard, M.A.; Rowe, A.M.; Chahine, R. Magnetic Refrigeration: Single and Multimaterial Active Magnetic Regenerator Experiments. J. Appl. Phys. 2004, 95, 21466. [Google Scholar] [CrossRef]
- Bohigas, X.; Molins, E.; Roig, A.; Tejeda, J.; Zhang, X.X. Room-Temperature Magnetic Refrigerator Using Permanent Magnets. IEEE Trans. Magn. 2000, 36, 538–544. [Google Scholar] [CrossRef]
- He, X.N.; Gong, M.Q.; Zhang, H.; Dai, W.; Shen, J.; Wu, J.J. Design and performance of a room-temperature hybrid magnetic refrigerator combined with Stirling gas refrigeration effect. Int. J. Refrig. 2013, 36, 1465–1471. [Google Scholar] [CrossRef]
- Shir, F.; Torre, E.D.; Bennett, L.H.; Mavriplis, C.; Shull, R.D. Modeling of Magnetization and Demagnetization in Magnetic Regenerative Refrigeration. IEEE Trans. Magn. 2004. [Google Scholar] [CrossRef]
- Peksoy, O.; Rowe, A. Demagnetizing Effects in Active Magnetic Regenerators. J. Magn. Magn. Mater. 2005, 288, 424–432. [Google Scholar] [CrossRef]
- Rowe, A.; Tura, A. Active Magnetic Regenerator Performance Enhancement Using Passive Magnetic Materials. J. Magn. Magn. Mater. 2008, 320, 1357–1363. [Google Scholar] [CrossRef]
- Huang, W.; Teng, C. A simple magnetic refrigerator evaluation model. J. Magn. Magn. Mater. 2004, 282, 311–316. [Google Scholar] [CrossRef]
- Ranke, P.J.; de Oliveira, N.A.; Mello, C.; Carvalho, A.M.G.; Gama, S. Analytical Model to Understand the Colossal Magnetocaloric Effect. Phys. Rev. B. 2005, 71, 054410. [Google Scholar] [CrossRef]
- Gama, S.; Coelho, A.A.; de Campos, A.; Carvalho, A.M.G.; Gandra, F.C.G.; von Ranke, P.J.; de Oliveira, N.A. Pressure-Induced Colossal Magnetocaloric Effect in MnAs. Phys. Rev. Lett. 2004, 93, 237202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanami, T.; Chiba, K.; Sakurai, K.; Ikegawa, M. Optimization of a Magnetic Refrigerator at Room Temperature for Air Cooling Systems. Int. J. Refrig. 2006, 29, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Gschneider, K.A., Jr. Metals, alloys and compounds—high purities do make a difference! J. Alloys Compd. 1993, 193, 1–6. [Google Scholar] [CrossRef]
- Allab, F.; Kedous-Lebouc, A.; Yonnet, J.P.; Fournier, J.M. A Magnetic Field Source System for Magnetic Refrigeration and Its Interaction with Magnetocaloric Material. Int. J. Refrig. 2006, 29, 1340–1347. [Google Scholar] [CrossRef]
- Bjørk, R.; Bahl, C.R.H.; Smith, A.; Pryds, N. Optimization and improvement of Halbach cylinder design. J. Appl. Phys. 2008, 104, 013910. [Google Scholar] [CrossRef] [Green Version]
- Fortkamp, F.P.; Lozano, J.A.; Barbosa, J.R. Analytical Solution of Concentric Two-Pole Halbach Cylinders as a Preliminary Design Tool for Magnetic Refrigeration Systems. J. Magn. Magn. Mater. 2017, 444, 87–97. [Google Scholar] [CrossRef]
- Bjørk, R.; Smith, A.; Bahl, C.R.H. Analysis of the Magnetic Field, Force, and Torque for Two-Dimensional Halbach Cylinders. J. Magn. Magn. Mater. 2010, 322, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hess, T.; Vogel, C.; Maier, L.M.; Barcza, A.; Vieyra, H.P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Phenomenological Model for a First-Order Magnetocaloric Material. Int. J. Refrig. 2020, 109, 128–134. [Google Scholar] [CrossRef]
- Hess, T.; Maier, L.M.; Corhan, P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Modelling Cascaded Caloric Refrigeration Systems That Are Based on Thermal Diodes or Switches. Int. J. Refrig. 2019, 103, 215–222. [Google Scholar] [CrossRef]
- Yu, B.; Liu, M.; Egolf, P.W.; Kitanovski, A. A Review of Magnetic Refrigerator and Heat Pump Prototypes Built before the Year 2010. Int. J. Refrig. 2010, 33, 1029–1060. [Google Scholar] [CrossRef]
- Kitanovski, A.; Tušek, J.; Tomc, U.; Plaznik, U.; Ožbolt, M.; Poredoš, A. Magnetocaloric Energy Conversion—From Theory to Applications; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Christiaanse, T.V.; Govindappa, P.; Niknia, I.; Teyber, R.; Barbosa, J.R.; Rowe, A. Magnetic Heat Pumps: An Overview of Design Principles and Challenges. Sci. Technol. Built Environ. 2016, 22, 507–519. [Google Scholar] [CrossRef]
- Greco, A.; Aprea, C.; Maiorino, A.; Masselli, C. A Review of the State of the Art of Solid-State Caloric Cooling Processes at Room-Temperature before 2019. Int. J. Refrig. 2019, 106, 66–88. [Google Scholar] [CrossRef]
- Jacobs, S.; Auringer, J.; Boeder, A.; Chell, J.; Komorowski, L.; Leonard, J.; Russek, S.; Zimm, C. The Performance of a Large-Scale Rotary Magnetic Refrigerator. Int. J. Refrig. 2014, 37, 84–91. [Google Scholar] [CrossRef]
- Chaudron, J.B.; Muller, C.; Hittinger, M.; Risser, M.; Lionte, S. Performance Measurements on a Large-Scale Magnetocaloric Cooling Application at Room Temperature. In Proceedings of the 8th International Conference on Caloric Cooling (Thermag VIII), Darmstadt, Germany, 16–20 September 2018. [Google Scholar] [CrossRef]
- Nakashima, A.T.D.; Fortkamp, F.P.; de Sá, N.M.; dos Santos, V.M.A.; Hoffmann, G.; Peixer, G.F.; Dutra, S.L.; Ribeiro, M.C.; Lozano, J.A.; Barbosa, J.R. A Magnetic Wine Cooler Prototype. Int. J. Refrig. 2021, 122, 110–121. [Google Scholar] [CrossRef]
- Smaïli, A.; Chahine, R. Thermodynamic Investigations of Optimum Active Magnetic Regenerators. Cryogenics 1998, 38, 247–252. [Google Scholar] [CrossRef]
- Allab, F.; Kedous-Lebouc, A.; Fournier, J.M.; Yonnet, J.P. Numerical Modeling for Active Magnetic Regenerative Refrigeration. IEEE Trans. Magn. 2005, 41, 3757–3759. [Google Scholar] [CrossRef]
- Dikeos, J. Numerical Analysis of an Active Magnetic Regenerator (AMR) Refrigeration Cycle. AIP Conf. Proc. 2006, 823, 993–1000. [Google Scholar] [CrossRef]
- Sarlah, A.; Kitanovski, A.; Poredos, A.; Egolf, P.W.; Sari, O.; Gendre, F.; Besson, C. Static and Rotating Active Magnetic Regenerators with Porous Heat Exchangers for Magnetic Cooling. Int. J. Refrig. 2006, 29, 1332–1339. [Google Scholar] [CrossRef]
- Bouchekara, H.; Kebous-Lebouc, A.; Depuis, C.; Allab, F. Prediction and optimisation of geometrical properties of the refrigerant bed in an AMRR cycle. Int. J. Refrig. 2008, 31, 1224–1230. [Google Scholar] [CrossRef]
- Petersen, T.F.; Pryds, N.; Smith, A.; Hattel, J.; Schmidt, H.; Høgaard Knudsen, H.-J. Two-Dimensional Mathematical Model of a Reciprocating Room-Temperature Active Magnetic Regenerator. Int. J. Refrig. 2008, 31, 432–443. [Google Scholar] [CrossRef]
- Engelbrecht, K.A. Numerical Model of an Active Magnetic Regenerator Refrigerator with Experimental Validation. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 2008. [Google Scholar]
- Nielsen, K.K.; Bahl, C.R.H.; Smith, A.; Bjørk, R.; Pryds, N.; Hattel, J. Detailed Numerical Modeling of a Linear Parallel-Plate Active Magnetic Regenerator. Int. J. Refrig. 2009, 32, 1478–1486. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, J.; Nesreddine, H.; Galanis, N. Model of a Porous Regenerator Used for Magnetic Refrigeration at Room Temperature. Int. J. Heat Mass Transf. 2009, 52, 1223–1229. [Google Scholar] [CrossRef]
- Tagliafico, G.; Scarpa, F.; Canepa, F. A Dynamic 1-D Model for a Reciprocating Active Magnetic Regenerator; Influence of the Main Working Parameters. Int. J. Refrig. 2010, 33, 286–293. [Google Scholar] [CrossRef]
- Risser, M.; Vasile, C.; Engel, T.; Keith, B.; Muller, C. Numerical Simulation of Magnetocaloric System Behaviour for an Industrial Application. Int. J. Refrig. 2010, 33, 973–981. [Google Scholar] [CrossRef]
- Sarlah, A.; Poredos, A. Dimensionless Numerical Model for Simulation of Active Magnetic Regenerator Refrigerator. Int. J. Refrig. 2010, 33, 1061–1067. [Google Scholar] [CrossRef]
- Liu, M.; Yu, B. Numerical Investigations on Internal Temperature Distribution and Refrigeration Performance of Reciprocating Active Magnetic Regenerator of Room Temperature Magnetic Refrigeration. Int. J. Refrig. 2011, 34, 617–627. [Google Scholar] [CrossRef]
- Tušek, J.; Kitanovski, A.; Prebil, I.; Poredoš, A. Dynamic Operation of an Active Magnetic Regenerator (AMR): Numerical Optimization of a Packed-Bed AMR. Int. J. Refrig. 2011, 34, 1507–1517. [Google Scholar] [CrossRef]
- Rowe, A. Thermodynamics of Active Magnetic Regenerators: Part I. Cryogenics 2012, 8. [Google Scholar] [CrossRef]
- Rowe, A. Thermodynamics of Active Magnetic Regenerators: Part II. Cryogenics 2012, 52, 119–128. [Google Scholar] [CrossRef]
- Vuarnoz, D.; Kawanami, T. Numerical Analysis of a Reciprocating Active Magnetic Regenerator Made of Gadolinium Wires. Appl. Therm. Eng. 2012, 37, 388–395. [Google Scholar] [CrossRef]
- Oliveira, P.A.; Trevizoli, P.V.; Barbosa, J.R.; Prata, A.T. A 2D Hybrid Model of the Fluid Flow and Heat Transfer in a Reciprocating Active Magnetic Regenerator. Int. J. Refrig. 2012, 35, 98–114. [Google Scholar] [CrossRef]
- Canesin, F.C.; Trevizoli, P.V.; Lozano, L.A.; Barbosa, J.R., Jr. Modeling of a parallel plate active magnetic generator using an open source CFD program. In Proceedings of the Fifth IIF-IIR International Conference on Magnetic Refrigeration at Room Temperature (Thermag V), Grenoble, France, 17–20 September 2012. [Google Scholar]
- Risser, M.; Vasile, C.; Muller, C.; Noume, A. Improvement and Application of a Numerical Model for Optimizing the Design of Magnetic Refrigerators. Int. J. Refrig. 2013, 36, 950–957. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A. The Use of the First and of the Second Order Phase Magnetic Transition alloys for an AMR Refrigerator at Room Temperature: A Numerical Analysis of the Energy Performances. Energy Convers. Manag. 2013, 70, 40–55. [Google Scholar] [CrossRef]
- Mira, A.; Espanet, C.; de Larochelambert, T.; Giurgea, S.; Nika, P. Influence of Computing Magnetic Field on Thermal Performance of a Magnetocaloric Cooling System. Eur. J. Electr. Eng. 2014, 17, 151–170. [Google Scholar] [CrossRef]
- Burdyny, T.; Arnold, D.S.; Rowe, A. AMR Thermodynamics: Semi-Analytic Modeling. Cryogenics 2014, 62, 177–184. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Su, Y.-C.; Lee, C.-H.; Cheng, P.-H.; Leou, K.-C. Modeling of Graded Active Magnetic Regenerator for Room-Temperature, Energy-Efficient Refrigeration. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Nikkola, P.; Mahmed, C.; Balli, M.; Sair, O. 1D model of an active magnetic regenerator. Int. J. Refrig. 2014, 37, 34–50. [Google Scholar] [CrossRef]
- Lei, T.; Nielsen, K.K.; Engelbrecht, K.; Bahl, C.R.H.; Bez, H.N.; Veje, C.T. Sensitivity study of multi-layer active magnetic regenerators using first order magnetocaloric material La(Fe,Mn,Si)13Hy. J. Appl. Phys. 2015, 118, 014903. [Google Scholar] [CrossRef]
- Lionte, S.; Vasile, C.; Siroux, M. Numerical Analysis of a Reciprocating Active Magnetic Regenerator. Appl. Therm. Eng. 2015, 75, 871–879. [Google Scholar] [CrossRef]
- Park, I.; Kim, Y.; Park, J.; Jeong, S. Design Method of the Layered Active Magnetic Regenerator (AMR) for Hydrogen Liquefaction by Numerical Simulation. Cryogenics 2015, 70, 57–64. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Nakashima, A.T.; Peixer, G.F.; Barbosa, J.R. Performance Evaluation of an Active Magnetic Regenerator for Cooling Applications—Part I: Experimental Analysis and Thermodynamic Performance. Int. J. Refrig. 2016, 72, 192–205. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Nakashima, A.T.; Barbosa, J.R. Performance Evaluation of an Active Magnetic Regenerator for Cooling Applications—Part II: Mathematical Modeling and Thermal Losses. Int. J. Refrig. 2016, 72, 206–217. [Google Scholar] [CrossRef]
- Niknia, I.; Campbell, O.; Christiaanse, T.V.; Govindappa, P.; Teyber, R.; Trevizoli, P.V.; Rowe, A. Impacts of Configuration Losses on Active Magnetic Regenerator Device Performance. Appl. Therm. Eng. 2016, 106, 601–612. [Google Scholar] [CrossRef]
- Schroeder, M.G.; Brehob, E. A Flexible Numerical Model of a Multistage Active Magnetocaloric Regenerator. Int. J. Refrig. 2016, 65, 250–257. [Google Scholar] [CrossRef]
- Mugica, I.; Poncet, S.; Bouchard, J. Entropy generation in a parallel-plate active magnetic regenerator with insulator layers. J. Appl. Phys. 2017, 121, 074901. [Google Scholar] [CrossRef]
- Roy, S.; Poncet, S.; Sorin, M. Sensitivity analysis and multiobjective optimization of a parallel-plate active magnetic regenerator using a genetic algorithm. Int. J. Refrig. 2017, 75, 276–285. [Google Scholar] [CrossRef]
- Plait, A.; Giurgea, S.; de Larochelambert, T.; Nika, P.; Espanet, C. Low computational cost semi-analytical magnetostatic model for magnetocaloric refrigeration systems. AIP Adv. 2018, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Plait, A.; de Larochelambert, T.; Giurgea, S.; Espanet, C. Experimental validation of a multiphysics modelling for a magnetocaloric bench. Int. J. Refrig. 2021. under review. [Google Scholar]
- Monfared, B. Design and optimization of regenerators of a rotary magnetic refrigeration device using a detailed simulation model. Int. J. Refrig. 2018, 88, 260–274. [Google Scholar] [CrossRef]
- Mugica, I.; Poncet, S.; Bouchard, J. An open source DNS solver for the simulation of Active Magnetocaloric Regenerative cycles. Appl. Therm. Eng. 2018, 141, 600–616. [Google Scholar] [CrossRef]
- Teyber, R.; Holladay, J.; Meinhardt, K.; Polikarpov, E.; Thomsen, E.; Cui, J.; Rowe, A.; Barclay, J. Performance Investigation of a High-Field Active Magnetic Regenerator. Appl. Energy 2019, 236, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.J.; Amaral, J.S.; Amaral, V.S. Modeling and Computing Magnetocaloric Systems Using the Python Framework Heatrapy. Int. J. Refrig. 2019, 106, 278–282. [Google Scholar] [CrossRef]
- Vieira, B.P.; Bez, H.N.; Kuepferling, M.; Rosa, M.A.; Schafer, D.; Plá Cid, C.C.; Vieyra, H.A.; Basso, V.; Lozano, J.A.; Barbosa, J.R., Jr. Magnetocaloric properties of spheroidal La(Fe,Mn,Si)13Hy granules and their performance in epoxy-bonded active magnetic regenerators. Appl. Therm. Eng. 2021, 183, 116185. [Google Scholar] [CrossRef]
- Roudaut, J.; Kedous-Lebouc, A.; Yonnet, J.P.; Muller, C. Numerical analysis of an active magnetic regenerator. Int. J. Refrig. 2011, 34, 1797–1804. [Google Scholar] [CrossRef]
- Tura, A.; Roszmann, J.; Dikeos, J.; Rowe, A. Cryogenic Active Magnetic Regenerator Test Apparatus. AIP Conf. Proc. 2006, 823, 985–992. [Google Scholar] [CrossRef]
- Rowe, A.M. Active Magnetic Regenerators: Performance in the Vicinity of Para-Ferromagnetic Second Order Phase Transitions. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, 2002. [Google Scholar]
- Engelbrecht, K.A.; Bahl, C.R.H. Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance. J. Appl. Phys. 2010, 108. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, K.; Tušek, J.; Nielsen, K.K.; Kitanovski, A.; Bahl, C.R.H.; Poredoš, A. Improved Modelling of a Parallel Plate Active Magnetic Regenerator. J. Phys. Appl. Phys. 2013, 46, 11. [Google Scholar] [CrossRef]
- Vuarnoz, D.; Kawanami, T. Experimental Validation of a Coupled Magneto-Thermal Model for a Flat-Parallel-Plate Active Magnetic Regenerator. Appl. Therm. Eng. 2013, 54, 433–439. [Google Scholar] [CrossRef]
- Risser, M.; Engel, T.; Vasile, C. Effects of Relative Orientation of Magnetocaloric Inserts with the Magnetic Flux. Int. J. Refrig. 2009, 32, 988–995. [Google Scholar] [CrossRef]
- Dai, W.; Shen, B.G.; Li, D.X.; Gao, Z.X. Application of High-Energy Nd–Fe–B Magnets in the Magnetic Refrigeration. J. Magn. Magn. Mater. 2000, 218, 25–30. [Google Scholar] [CrossRef]
- Aprea, C.; Maiorino, A. A Flexible Numerical Model to Study an Active Magnetic Refrigerator for near Room Temperature Applications. Appl. Energy 2010, 87, 2690–2698. [Google Scholar] [CrossRef]
- Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C. A Comparison between Experimental and 2D Numerical Results of a Packed-Bed Active Magnetic Regenerator. Appl. Therm. Eng. 2015, 90, 376–383. [Google Scholar] [CrossRef]
- Lei, T.; Nielsen, K.K.; Engelbrecht, K. Modelling and simulation of regenerators with complex flow arrangements for active magnetocaloric refrigeration. In Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, Copenhagen, Denmark, 25–27 June 2014. [Google Scholar]
- Lei, T.; Navickaité, K.; Engelbrecht, K.; Barcza, A.; Vieyra, H.; Nielsen, K.K.; Bahl, C.R.H. Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration. Appl. Therm. Eng. 2018, 128, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Navickaitė, K.; Bahl, C.; Engelbrecht, K. Nature-Inspired Flow Patterns for Active Magnetic Regenerators Assessed Using a 1D AMR Model. Front. Energy Res. 2019, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lei, T. Modeling of Active Magnetic Regenerators and Experimental Investigation of Passive Regenerators with Oscillating Flow. Ph.D. Thesis, Technical University of Denmark, Risø, Denmark, 2016. [Google Scholar]
- Trevizoli, P.V.; Barbosa, J.R.; Tura, A.; Arnold, D.S.; Rowe, A. Modeling of Thermomagnetic Phenomena in Active Magnetocaloric Regenerators. J. Therm. Sci. Eng. Appl. 2014, 6, 10. [Google Scholar] [CrossRef]
- Arnold, D.S.; Tura, A.; Ruebsaat-Trott, A.; Rowe, A. Design Improvements of a PMs Active Magnetic Refrigerator. Int. J. Refrig. 2014, 37, 99–105. [Google Scholar] [CrossRef]
- Teyber, R.; Trevizoli, P.V.; Christiaanse, T.V.; Govindappa, P.; Niknia, I.; Rowe, A. Semi-Analytic AMR Element Model. Appl. Therm. Eng. 2018, 128, 1022–1029. [Google Scholar] [CrossRef]
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.J.; Amaral, V.S.; Amaral, J.S. Cooling by Sweeping: A New Operation Method to Achieve Ferroic Refrigeration without Fluids or Thermally Switchable Components. Int. J. Refrig. 2019, 101, 98–105. [Google Scholar] [CrossRef]
- Silva, D.J. Heatrapy: A Flexible Python Framework for Computing Dynamic Heat Transfer Processes Involving Caloric Effects in 1.5D Systems. SoftwareX 2018, 7, 373–382. [Google Scholar] [CrossRef]
- Silva, D.J.; Ventura, J.; Araújo, J.P.; Pereira, A.M. Maximizing the Temperature Span of a Solid State Active Magnetic Regenerative Refrigerator. Appl. Energy 2014, 113, 1149–1154. [Google Scholar] [CrossRef]
- He, J. Approximate analytical solution of Blasius’ equation. Commun. Nonlinear Sci. Numer. Simul. 1998, 3, 260–263. [Google Scholar] [CrossRef]
- Lubensky, T.C.; Chen, J.-H. Anisotropic critical properties of the de Gennes model for the nematic to smectic-A phase transition. Phys. Rev. B. 1978, 366. [Google Scholar] [CrossRef]
- Siddikov, B.M.; Wade, B.A.; Schultz, D.H. Numerical Simulation of the Active Magnetic Regenerator. Comput. Math. Appl. 2005, 49, 1525–1538. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa-Jaime, B.; Corberán, J.M.; Vasile, C.; Muller, C.; Risser, M.; Payá, J. Sizing of a Reversible Magnetic Heat Pump for the Automotive Industry. Int. J. Refrig. 2014, 37, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Burdyny, T.; Rowe, A. Simplified Modeling of Active Magnetic Regenerators. Int. J. Refrig. 2013, 36, 932–940. [Google Scholar] [CrossRef]
- Burdyny, T.; Ruebsaat-Trott, A.; Rowe, A. Performance Modeling of AMR Refrigerators. Int. J. Refrig. 2014, 37, 51–62. [Google Scholar] [CrossRef]
- Schumann, U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 1975, 18, 376–404. [Google Scholar] [CrossRef] [Green Version]
- Mugica, I.; Poncet, S.; Bouchard, J. Detailed numerical simulations of a single stage of rotatory active magnetic regenerators: Influence of the pin geometry. J. Therm. Sci. 2020, 149, 106198. [Google Scholar] [CrossRef]
- Bahl, C.R.H.; Petersen, T.F.; Smith, A. A versatile magnetic refrigeration test device. Rev. Sci. Instrum. 2008, 79, 093906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors, Year, References | Model Type, n-D | Physical Coupling | Magnetic Field Source, Movement 1 | Geometry of the Studied MCM | Validation | Description |
---|---|---|---|---|---|---|
Smaïli and Chahine, 1998 [52] | Semi-analytical, 1-D | Thermo-fluidic | Porous matrix | Study of MCM composite and thermodynamical cycle. | ||
Allab et al., 2005 [53] | Semi-analytical, 1-D | Thermo-fluidic | PM, translation | Gd thin plate | Experimental | Study on the AMRR cycle. |
Dikeos et al., 2006 [54] | Semi-analytical, 1-D | Thermo-fluidic | SM, translation | Gd puck | Experimental | Simulation of an AMRR test device. |
Sarlah et al., 2006 [55] | Semi-analytical, 2-D | Thermo-fluidic | PM, rotary | Gd honeycomb | Study on the four steps of an AMRR. | |
Bouchekara et al., 2008 [56] | Semi-analytical, 1-D | Thermo-fluidic | Gd plates | Numerical | Inverse problem optimization method to design an AMRR. | |
Petersen et al., 2008 [57] | Semi-analytical, 2-D | Thermo-fluidic | PM, translation | Gd parallel plates | Numerical | Study on parallel plates with a 2-D model. |
Engelbrecht et al., 2008 [58] | Semi-analytical, 1-D | Thermo-fluidic | PM, translation | Three parallel plates | Experimental and numerical | Model considering the mechanical losses. |
Nielsen et al., 2009 [59] | Semi-analytical, 2.5-D | Thermo-fluidic | PM, translation | Gd parallel plates | Experimental | Improvement of Petersen’s model. |
Bouchard et al., 2009 [60] | Semi-analytical, 3-D | Thermo-fluidic | Gd spheres particles | Experimental | Study on a porous regenerator. | |
Tagliafico et al., 2010 [61] | Semi-analytical, 1-D | Magneto-thermo-fluidic | Gd | Parametric study on the AMRR performances. | ||
Risser et al., 2010 [62] | Semi-analytical, 1-D | Magneto-thermo-fluidic | PM | Gd parallel plates | Study of a MC system for an industrial application. | |
Sarlah and Poredos, 2010 [63] | Semi-analytical, 1-D | Thermo-fluidic | Gd spherical particles | Experimental | Study on a dimensionless model. | |
Liu and Yu, 2011 [64] | Semi-analytical, 2-D | Magneto-thermo-fluidic | Gd packed bed | Experimental and numerical | Study on the AMRR performances and temperature distribution. | |
Tušek et al., 2011 [65] | Semi-analytical, 1-D | Thermo-fluidic | Packed bed Gd spheres | Study on a large AMRR operating conditions. | ||
Rowe, 2012 [66,67] | Semi-analytical, 1-D | Magneto-thermo-fluidic | Experimental | Model to study the AMRR thermodynamics. | ||
Vuarnoz and Kawanami, 2012 [68] | Semi-analytical, 1-D | Thermo-fluidic | PM, translation | Stack of Gd wires | Experimental | Model to study an AMRR geometry. |
Oliveira et al., 2012 [69] | Hybrid (analytical and numerical), 2-D | Thermo-fluidic | PM | Gd parallel plates | Experimental | Focus on the fluidic phenomena in the regenerator. |
Canesin et al., 2012 [70] | Semi-analytical, 2-D or 3-D | Thermo-fluidic | Analytical and numerical | Open source CFD program to study AMRR geometry. | ||
Risser et al., 2013 [71] | Semi-analytical and numerical, 1-D and 3-D | Magneto-thermo-fluidic | PM | Gd parallel plates | Experimental | Enhanced model to increase the design efficiency of future model. |
Aprea et al., 2013 [72] | Semi-analytical, 1-D | Thermo-fluidic | Comparison between SOMT and FOMT energy performances. | |||
Mira et al., 2014 [73] | Semi-analytical and numerical, 1-D | Magneto-thermo-fluidic | EM, static | Gd parallel plates | Experimental | Multi-physics model, applied to a test bench. |
Burdyny et al., 2014 [74] | Semi-analytical, 1-D | Magneto-thermo-fluidic | PM, rotary | Gd spheres | Experimental and numerical | Performance of a single-material AMRR with a good accuracy. |
Hsieh et al., 2014 [75] | Semi-analytical, 2-D | Thermo-fluidic | Segments of Gd and GdTb | Focus on a graded AMRR performance. | ||
Nikkola et al., 2014 [76] | Semi-analytical, 1-D | Thermo-fluidic | A model to study AMRR on Matlab® with a Graphical user interface. | |||
Lei et al., 2015 [77] | Semi-analytical, 1-D | Thermo-fluidic | PM | Packed particles bed of La(Fe,Mn,Si)13Hy | Experimental | An AMRR model to study multi-layered regenerator performances. |
Lionte et al., 2015 [78] | Semi-analytical, 2-D | Thermo-fluidic | PM | Gd parallel plates | Experimental | Simulation performance of a test bench. |
Park et al., 2015 [79] | Semi-analytical, 1-D | Thermo-fluidic | SM | Experimental | Model of a two-stage AMRR with 2 MCM for each stage. | |
Trevizoli et al., 2016 [80,81] | Semi-analytical, 1-D | Thermo-fluidic | PM, rotary | Gd spheres | Experimental | Mathematical modeling to determine the thermal losses for cooling applications. |
Niknia et al., 2016 [82] | Semi-analytical, 1-D | Thermo-fluidic | PM | Gd spheres | Experimental | Study on the external losses. |
Schroeder and Brehob, 2016 [83] | Semi-analytical, 1-D | Thermo-fluidic | Gd parallel plates | Experimental | New four cycles consideration of the AMRR processes. | |
Mugica et al., 2017 [84] | Semi-analytical, 1-D | Magneto-thermo-fluidic | PM, translation | Gd parallel plates | Experimental and numerical | The addition of insulator layers within the MCM increases the temperature span. |
Roy et al., 2017 [85] | Semi-analytical, 1-D | Thermo-fluidic | Gd parallel plates | Experimental | A model coupled with a genetic algorithm to study parallel plate AMRR. | |
Plait et al., 2018 [86,87] | Semi-analytical and numerical, 2-D | Magneto-thermo-fluidic | EM, static | Gd parallel plates | Experimental | Multi-physics model, application to a test bench. |
Monfared, 2018 [88] | Semi-analytical, 1-D and 3-D | Magneto-thermo-fluidic | PM, rotary | Packed bed of Gd particles | Experimental | Multi-physic model to design and optimize a rotary AMRR device. |
Mugica et al., 2018 [89] | Semi-analytical, 3-D | Magneto-thermo-fluidic | PM | Random packed bed particles | Experimental | An original solver to study random AMRR of packed bed particles. |
Teyber et al., 2019 [90] | Semi-analytical, 1-D | Thermo-fluidic | PM | Experimental | Semi-analytic AMRR model with Phyton ScyPy package. | |
Silva et al., 2019 [91] | Semi-analytical, 1-D | Thermo-fluidic | PM, translation | Numerical | Development of the python framework: HEAt TRAnsfer in Python (HEATRAPY). | |
Vieira et al., 2021 [92] | Semi-analytical, 1-D | Thermo-fluidic | La(Fe,Mn,Si)13Hy spheroidal particles | Experimental | Study of the La(Fe,Mn,Si)13Hy properties and performances in an epoxy-bonded AMRR. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eustache, J.; Plait, A.; Dubas, F.; Glises, R. Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration. Math. Comput. Appl. 2021, 26, 47. https://doi.org/10.3390/mca26020047
Eustache J, Plait A, Dubas F, Glises R. Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration. Mathematical and Computational Applications. 2021; 26(2):47. https://doi.org/10.3390/mca26020047
Chicago/Turabian StyleEustache, Julien, Antony Plait, Frédéric Dubas, and Raynal Glises. 2021. "Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration" Mathematical and Computational Applications 26, no. 2: 47. https://doi.org/10.3390/mca26020047
APA StyleEustache, J., Plait, A., Dubas, F., & Glises, R. (2021). Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration. Mathematical and Computational Applications, 26(2), 47. https://doi.org/10.3390/mca26020047