Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics
Abstract
:1. Introduction
2. Accounting for Nonlocality in Mathematical Models and Their Applications
2.1. Spatial Nonlocality
2.2. Nonlocality in Time
3. Time-Dependent Non-Homogeneous Schrödinger Equations
4. Fractional and Functional Calculi in Handling Nonlocality
5. Reduction of Nonlocal Models
- (a) and , are continuous on , or
- (b) is continuously differentiable on .
6. Parameter Estimations via Computer Algebra
7. Modelling with Nonlocality in Data-Driven Environments
8. Discussion and Generalizations
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahler, D.H.; Rozema, L.; Fisher, K.; Vermeyden, L.; Resch, K.J.; Wiseman, H.M.; Steinberg, A. Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2016, 2, e1501466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossenfelder, S. Theory and phenomenology of space-time defects. Adv. High Energy Phys. 2014, 2014, 950672. [Google Scholar] [CrossRef]
- Musser, G. Where is Here? Sci. Am. 2015, 313, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Maudlin, T. Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264–270. [Google Scholar] [CrossRef]
- Aharonov, Y.; Popescu, S.; Rohrlich, D. On conservation laws in quantum mechanics. Proc. Natl. Acad. Sci. USA 2021, 118, e1921529118. [Google Scholar] [CrossRef]
- Emmrich, E.; Lehoucq, R.B.; Puhst, D. Peridynamics: A Nonlocal Continuum Theory. In Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering; Griebel, M., Schweitzer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 89, pp. 45–65. [Google Scholar]
- Evgrafov, A.; Bellido, J.C. From non-local Eringen’s model to fractional elasticity. Math. Mech. Solids 2019, 24, 1935–1953. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Fang, G.D.; Liang, J.; Fu, M.Q.; Wang, B. A new type of peridynamics: Element-based peridynamics. Comput. Methods Appl. Mech. Eng. 2020, 366, 113098. [Google Scholar] [CrossRef]
- Bruno, L.; Tosin, A.; Tricerri, P.; Venuti, F. Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications. Appl. Math. Model. 2011, 35, 426–445. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Some cosmological solutions of a new nonlocal gravity model. Symmetry 2020, 12, 917. [Google Scholar] [CrossRef]
- Chen, L.; Painter, K.; Surulescu, C.; Zhigun, A. Mathematical models for cell migration: A non-local perspective. Phil. Trans. R. Soc. B 2020, 375, 20190379. [Google Scholar] [CrossRef]
- Filk, T. Temporal non-locality. Found. Phys. 2013, 43, 533–547. [Google Scholar] [CrossRef]
- Aharonov, Y.; Cohen, E.; Colombo, F.; Landsberger, T.; Sabadini, I.; Struppa, D.C.; Tollaksen, J. Finally making sense of the double-slit experiment. Proc. Natl. Acad. Sci. USA 2017, 114, 6480–6485. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.; Carmi, A. In praise of quantum uncertainty. Entropy 2020, 22, 302. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, K. Timelessness strictly inside the quantum realm. Entropy 2021, 23, 772. [Google Scholar] [CrossRef]
- Jirasek, M. Nonlocal Theories, in Encyclopedia of Continuum Mechanics; Altenbach, H., Ochsner, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Bergel, G.L.; Li, S. The total and updated lagrangian formulations of state-based peridynamics. Comput. Mech. 2016, 58, 351–370. [Google Scholar] [CrossRef]
- Javili, A.; Morasata, R.; Oterkus, E.; Oterkus, S. Peridynamics review. Math. Mech. Solids 2018, 24, 3714–3739. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.; Bochev, P. Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method. Results Appl. Math. 2021, 9, 100129. [Google Scholar] [CrossRef]
- Turing, A. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 1952, 237, 37–72. [Google Scholar]
- Beck, M.; Doikou, A.; Malham, S.J.; Stylianidis, I. Partial differential systems with non-local nonlinearities: Generation and solutions. Philos. Trans. A Math. Phys. Eng. Sci. 2018, 376, 20170195. [Google Scholar] [CrossRef]
- Pal, S.; Melnik, R. Pathology dynamics in healthy-toxic protein interaction and the multiscale analysis of neurodegenerative diseases. In Computational Science—ICCS 2021, Lecture Notes in Computer Science; Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2021; Volume 12746, pp. 528–540. [Google Scholar]
- Bouin, E.; Henderson, C.; Ryzhik, L. The Bramson delay in the non-local Fisher–KPP equation. Ann. L’Institut Henri Poincare Anal. Non Lineaire 2020, 37, 51–77. [Google Scholar] [CrossRef]
- Wang, J.B.; Wu, C.F. Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal.-Real World Appl. 2021, 58, 103208. [Google Scholar] [CrossRef]
- D’Elia, M.; Du, Q.; Gunzburger, M.; Lehoucq, R. Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes. Comput. Methods Appl. Math. 2017, 17, 707–722. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, Q.; Du, Q.; Liu, W. Nonlocal neural networks, nonlocal diffusion and nonlocal modeling. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; 11p. [Google Scholar]
- Bohle, T.; Kuehn, C. Mathematical analysis of nonlocal PDEs for network generation. Math. Model. Nat. Phenom. 2019, 14, 506. [Google Scholar] [CrossRef]
- Ei, S.I.; Ishii, H.; Kondo, S.; Miura, T.; Tanaka, Y. Effective nonlocal kernels on reaction-diffusion networks. J. Theor. Biol. 2021, 509, 110496. [Google Scholar] [CrossRef]
- Du, Q. Nonlocal Modeling, Analysis, and Computation, CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Tian, X.; Du, Q. Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models. SIAM Rev. 2020, 62, 199–227. [Google Scholar] [CrossRef]
- Fjordholm, U.S.; Ruf, A.M. Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws. SIAM J. Numer. Anal. 2021, 59, 1167–1194. [Google Scholar] [CrossRef]
- Merle, F.; Raphael, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. Second. Ser. 2005, 161, 157–222. [Google Scholar] [CrossRef] [Green Version]
- Martel, Y.; Merle, F. Multi solitary waves for nonlinear Schrödinger equations. Ann. L’Institut Henri Poincare (C) Non Linear Anal. 2006, 23, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Duyckaerts, T.; Roudenko, S. Going beyond the threshold: Scattering and blow-up in the focusing NLS equation. Commun. Math. Phys. 2015, 334, 1573–1615. [Google Scholar] [CrossRef] [Green Version]
- Kenig, C.E.; Pilod, D.; Ponce, G.; Vega, L. On the unique continuation of solutions to non-local non-linear dispersive equations. Commun. Partial. Differ. Equ. 2020, 45, 872–886. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Melnik, R.; He, H. Modelling nonlocal processes in semiconductor devices with exponential difference schemes. J. Eng. Math. 2000, 38, 233–263. [Google Scholar] [CrossRef]
- Melnik, R.; He, H. Quasi-hydrodynamic modelling and computer simulation of coupled thermo-electrical processes in semiconductor devices. Math. Comput. Simul. 2000, 52, 273–287. [Google Scholar] [CrossRef]
- Melnik, R.; He, H. Relaxation-time approximations of quasi-hydrodynamic-type in semiconductor device modelling. Model. Simul. Mater. Sci. Eng. 2000, 8, 133–149. [Google Scholar] [CrossRef]
- Melnik, R. Mathematical models for climate as a link between coupled physical processes and computational decoupling. Eng. Simul. Int. J. Electr. Electron. Other Phys. Syst. 1997, 15, 509–544. [Google Scholar]
- Radulovic, N.; Willatzen, M.; Melnik, R.; Lew, Y.; Voon, L.C. Influence of the metal contact size on the electron dynamics and transport inside the semiconductor heterostructure nanowire. J. Comput. Theor. Nanosci. 2006, 3, 551–559. [Google Scholar] [CrossRef]
- Melnik, R.; Wei, X.; Moreno-Hagelsieb, G. Nonlinear dynamics of cell cycles with stochastic mathematical models. J. Biol. Syst. 2009, 17, 425–460. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; Buroni, F.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Advanced modeling of lead-free piezocomposites: The role of nonlocal and nonlinear effects. Compos. Struct. 2020, 29, 111967. [Google Scholar] [CrossRef]
- Singh, S.; Krishnaswamy, J.; Melnik, R. Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions. J. Mech. Behav. Biomed. Mater. 2020, 110, 103859. [Google Scholar] [CrossRef]
- Leon, C.; Melnik, R. Studies of shape memory graphene nanostructures via integration of physics-based modelling and machine learning. In Proceedings of the 9th Edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (Coupled Problems 2021), Online Event, 14–16 June 2021; Onate, E., Papadrakakis, M., Schrefler, B., Eds.; Physics Informed Machine Learning For Scientific Computing: Cadiz, Spain, 2021; Volume IS25. [Google Scholar] [CrossRef]
- Fallahpour, R.; Melnik, R. Nonlinear vibration analysis of nanowire resonators for ultra-high resolution mass sensing. Measurement 2021, 175, 109136. [Google Scholar] [CrossRef]
- Shaheen, H.; Singh, S.; Melnik, R. A neuron-glial model of exosomal release in the onset and progression of Alzheimer’s disease. Front. Comput. Neurosci. 2021, 15, 653097. [Google Scholar] [CrossRef]
- Pal, S.; Melnik, R. Nonlocal multiscale interactions in brain neurodegenerative protein dynamics and coupled proteopathic processes. In Proceedings of the 9th Edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (Coupled Problems 2021), Online Event, 14–16 June 2021; Onate, E., Papadrakakis, M., Schrefler, B., Eds.; Coupled and Multi-Scale Bioengineering Problems: Cadiz, Spain, 2021; Volume IS12. [Google Scholar] [CrossRef]
- Tadic, B.; Melnik, R. Self-organized critical dynamics as a key to fundamental features of complexity in physical, biological, and social networks. Dynamics 2021, 1, 181–197. [Google Scholar] [CrossRef]
- Berners-Lee, A.; Wu, X.; Foster, D.J. Prefrontal cortical neurons are selective for non-local hippocampal representations during replay and behavior. J. Neurosci. 2021, 41, 5894–5908. [Google Scholar] [CrossRef]
- Montina, A.; Wolf, S. Discrimination of non-local correlations. Entropy 2019, 21, 104. [Google Scholar] [CrossRef] [Green Version]
- Cruzeiro, E.Z.; Gisin, N. Bell inequalities with one bit of communication. Entropy 2019, 21, 171. [Google Scholar] [CrossRef] [Green Version]
- Carmi, A.; Cohen, E. On the significance of the quantum mechanical covariance matrix. Entropy 2018, 20, 500. [Google Scholar] [CrossRef] [Green Version]
- Bharti, K.; Ray, M.; Kwek, L.-C. Non-classical correlations in n-cycle setting. Entropy 2019, 21, 134. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D.; Hayden, P. Information flow in entangled quantum systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2000, 456, 1759–1774. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Li, Y.H.; Liao, S.K.; Yang, M.; Cao, Y.; Zhang, L.; Ren, J.G.; Cai, W.Q.; Liu, W.Y.; Li, S.L.; et al. Entanglement-based secure quantum cryptography over 1120 km. Nature 2020, 582, 501–505. [Google Scholar] [CrossRef]
- Streiter, L.F.; Giacomini, F.; Brukner, C. Relativistic Bell test within quantum reference frames. Phys. Rev. Lett. 2021, 126, 230403. [Google Scholar] [CrossRef]
- Trujillo, J.J.; Scalas, E.; Diethelm, K.; Baleanu, D. Fractional Calculus: Models Furthermore, Numerical Methods; World Scientific: Singapore, 2016. [Google Scholar]
- Sandev, T.; Tomovski, Z. Fractional Equations and Models: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A New Definition of Fractional Derivative Without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Bouzenna, F.E.G.; Meftah, M.T.; Difallah, M. Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrödinger equations. Pramana J. Phys. 2020, 94, 92. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Yavuz, M.; Ozdemir, N. Comparing the new fractional derivative operators involving exponential and Mittag–Leffler kernel. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. Why the Mittag–Leffler function can be considered the Queen Function of the Fractional Calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P.; Samarskii, A.A.; Mikhailov, A.P. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Yang, C.; Ji, F.; Yin, Q. Fujita phenomenon in higher-order parabolic equation with nonlocal term. Appl. Anal. 2018, 97, 1042–1048. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Nonlocal initial value problems for Hadamard-type fractional differential equations and inclusions. Rocky Mt. J. Math. 2018, 48, 1043–1068. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Kirane, M.; Torebek, B.T. Blowing-up solutions of the time-fractional dispersive equations. Adv. Nonlinear Anal. 2021, 10, 952–971. [Google Scholar] [CrossRef]
- Hilb, E. Zur Theorie der Entwicklungen willku rlicher Funktionen nach Eigenfunktionen. Math. Z. 1918, 58, 1–9. [Google Scholar]
- Bitsadze, A.V.; Samarskii, A.A. Some elementary generalizations of linear elliptic boundary value problems. Sov. Math. Dokl. 1969, 10, 398–400. [Google Scholar]
- Bitsadze, A.V. On the theory of nonlocal boundary value problems. Dokl. Akad. Nauk SSSR 1984, 277, 17–19. [Google Scholar]
- Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Ashyralyev, A.; Beigmohammadi, E.O. On Bitsadze–Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness. Appl. Math. Comput. 2012, 219, 1093–1107. [Google Scholar] [CrossRef]
- Melnik, V.N. Non-conservation law equation in mathematical modelling: Aspects of approximation. In Proceedings of the International Conference AEMC’96, Sydney, Australia, 15–17 July 1996; pp. 423–430, ISBN 0-85825-653-3. [Google Scholar]
- Galley, C.R. Classical mechanics of nonconservative systems. Phys. Rev. Lett. 2013, 110, 174301. [Google Scholar] [CrossRef] [Green Version]
- Rossi, J.; Carretero-Gonzalez, R.; Kevrekidis, P.G. Non-conservative variational approximation for nonlinear Schrödinger equations. Eur. Phys. J. Plus 2020, 135, 854. [Google Scholar] [CrossRef]
- Velten, H.; Carames, T.R.P. To conserve, or not to conserve: A review of nonconservative theories of gravity. Universe 2021, 7, 38. [Google Scholar] [CrossRef]
- Dixit, P.D.; Wagoner, J.; Weistuch, C.; Presse, S.; Ghosh, K.; Dill, K.A. Perspective: Maximum caliber is a general variational principle for dynamical systems. J. Chem. Phys. 2018, 148, 010901. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Dixit, P.D.; Agozzino, L.; Dill, K.A. The maximum caliber variational principle for nonequilibria. Annu. Rev. Phys. Chem. 2020, 71, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Lawson-Tancred, H.C. The Metaphysics by Aristotle; Penguin Books: London, UK, 1998; pp. 248–250. [Google Scholar]
- Aharonov, Y.; Popescu, S.; Tollaksen, J. Each instant of time a new Universe. arXiv 2013, arXiv:1305.1615. [Google Scholar]
- Hawking, S.; Penrose, R. The Nature of Space and Time; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Earman, J. The Penrose-Hawkins singularity theorems: History and implications. In The Expanding Worlds of General Relativity; Goenner, H., Renn, J., Ritter, J., Sauter, T., Eds.; Einstein Studies, The Center for Einstein Studies: Pasadena, CA, USA, 1999; Volume 7, pp. 235–267. [Google Scholar]
- Tollaksen, J. New insights on emergence from the perspective of weak values and dynamical non-locality. J. Phys. Conf. Ser. 2014, 504, 012029. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Cohen, E.; Rohrlich, D. Nonlocality of the Aharonov-Bohm effect. Phys. Rev. A 2016, 93, 042110. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Popescu, S.; Rohrlich, D.; Skrzypczyk, P. Quantum Cheshire Cats. New J. Phys. 2013, 15, 113015. [Google Scholar] [CrossRef]
- Aharonov, Y.; Colombo, F.; Popescu, S.; Sabadini, I.; Struppa, D.C.; Tollaksen, J. Quantum violations of the pigeonhole principle and the nature of quantum correlations. Proc. Natl. Acad. Sci. USA 2016, 113, 532–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharonov, Y.; Bagchia, S.; Dressel, J.; GregoryReznik, G.; Ridley, M.; Vaidman, L. Failed attempt to escape from the quantum pigeon conundrum. Phys. Lett. A 2021, 399, 127287. [Google Scholar] [CrossRef]
- Kopyciuk, T.; Lew, M.; Kurzynski, P. Pre- and post-selection paradoxes in quantum walks. New J. Phys. 2019, 21, 103054. [Google Scholar] [CrossRef] [Green Version]
- Briegel, H.J.; Popescu, S. A perspective on possible manifestations of entanglement in biological systems. In Quantum Effects in Biology; Mohseni, M., Omar, Y., Engel, G.S., Plenio, M.B., Eds.; Part III: Quantum Effects in Higher Organisms and Applications; Cambridge University Press: Cambridge, UK, 2014; pp. 277–310. [Google Scholar]
- Adlam, E. Spooky action at a temporal distance. Entropy 2018, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Guo, Y.-X.; Mei, F.-X. The initial motions for holonomic and nonholonomic mechanical systems. Acta Mech. 2017, 228, 1–13. [Google Scholar] [CrossRef]
- Ostrowski, J. Steering for a class of dynamic nonholonomic systems. IEEE Trans. Autom. Control 2000, 45, 1492–1498. [Google Scholar] [CrossRef] [Green Version]
- Zuazua, E. Propagation, observation, control and numerical approximation of waves approximated by finite difference method. SIAM Rev. 2005, 47, 197–243. [Google Scholar] [CrossRef]
- Stewart, A.M. Inverse problems: A Bayesian perspective. Acta Numer. 2010, 19, 451–559. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. Time, the Arrow of Time, and Quantum Mechanics. Front. Phys. 2018, 6, 81. [Google Scholar] [CrossRef]
- Musser, G. What is spacetime? Nature 2018, 557, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- El-Nabulsi, R.A. On nonlocal complexified Schrodinger equation and emergence of discrete quantum mechanics. Quantum Stud. Math. Found. 2016, 3, 327–335. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal generalized uncertainty principle and its implications in gravity and entropic Verlinde holographic approach. Quantum Stud. Math. Found. 2019, 6, 235–240. [Google Scholar] [CrossRef]
- Sanchez, N.G. The classical-quantum duality of nature including gravity. Int. J. Mod. Phys. D 2019, 28, 1950055. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, N.G. New quantum structure of space-time. Gravit. Cosmol. 2019, 25, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A. Replacing the notion of spacetime distance by the notion of correlation. Front. Phys. 2021, 2021, 655857. [Google Scholar] [CrossRef]
- Melnik, V.N. On consistent regularities of control and value functions. Numer. Funct. Anal. Optimiz. 1997, 18, 401–426. [Google Scholar] [CrossRef]
- Melnik, R.V.N. Dynamic system evolution and Markov chain approximation. Discret. Dyn. Nat. Soc. 1998, 2, 651894. [Google Scholar] [CrossRef] [Green Version]
- Melnik, R. Deterministic and stochastic dynamics with hyperbolic HJB-type equations. Dyn. Cont. Discrete Impul. Syst. Ser. A Math. Anal. 2003, 10, 317–330. [Google Scholar]
- Melnik, R.V.N. Markov chain network training and conservation law approximations: Linking microscopic and macroscopic models for evolution. Appl. Math. Comput. 2008, 199, 315–333. [Google Scholar] [CrossRef]
- Melnik, R.V.N. Coupling control and human factors in mathematical models of complex systems. Eng. Appl. Artif. Intell. 2009, 22, 351–362. [Google Scholar] [CrossRef]
- Milgrom, M. Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S.S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. MOND vs. dark matter in light of historical parallels. Stud. Hist. Philos. Mod. Phys. 2020, 71, 170–195. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Non-Linear Mech. 2017, 93, 65–81. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal thermodynamics properties of position-dependent mass particle in magnetic and Aharonov-Bohm flux fields. Few Body Syst. 2020, 61, 37. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 2020, 577, 1353716. [Google Scholar] [CrossRef]
- Suykens, J.A.K. Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 2009, 373, 1201–1211. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal approach to energy bands in periodic lattices and emergence of electron mass enhancement. J. Phys. Chem. Solids 2018, 122, 167–173. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Massive photons in magnetic materials from nonlocal quantization. J. Magn. Magn. Mater. 2018, 458, 213–216. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales. Quantum Stud. Math. Found. 2019, 6, 123–133. [Google Scholar] [CrossRef]
- Tateishi, A.A.; Ribeiro, H.V.; Lenzi, E.K. The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 2017, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Qiang, D.; Zhou, Z. Nonlocal-in-time dynamics and crossover of diffusive regimes. arXiv 2020, arXiv:2003.03618. [Google Scholar]
- Vila, M.; Garcia, J.H.; Cummings, A.W.; Power, S.R.; Groth, C.W.; Waintal, X.; Roche, S. Nonlocal spin dynamics in the crossover from diffusive to ballistic transport. Phys. Rev. Lett. 2020, 124, 196602. [Google Scholar] [CrossRef]
- Nestmann, K.; Wegewijs, M.R. The connection between time-local and time-nonlocal perturbation expansions. arXiv 2021, arXiv:2107.08949. [Google Scholar]
- Olkhovsky, V.S.; Recami, E. Time as a quantum observable. Int. J. Mod. Phys. A 2007, 22, 5063–5087. [Google Scholar] [CrossRef] [Green Version]
- Olkhovsky, V.S.; Recami, E. New developments in the study of time as a quantum observable. Int. J. Mod. Phys. B 2008, 22, 1877–1897. [Google Scholar] [CrossRef]
- Bauer, M. On the problem of time in quantum mechanics. Eur. J. Phys. 2017, 38, 035402. [Google Scholar] [CrossRef] [Green Version]
- Byszewski, L. Uniqueness criterion for solution of abstract nonlocal Cauchy problem. J. Appl. Math. Stoch. Anal. 1993, 6, 49–54. [Google Scholar] [CrossRef]
- Deng, K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 1993, 179, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Aizicovici, S.; Gao, Y. Functional differential equations with nonlocal initial conditions. J. Appl. Math. Stoch. Anal. 1997, 10, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Avalishvili, G.; Avalishvili, M. On nonclassical problems for first-order evolution equations. Georgian Math. J. 2011, 18, 441–463. [Google Scholar] [CrossRef]
- Avalishvili, G.; Avalishvili, M. Nonclassical problems with nonlocal initial conditions for abstract second-order evolution equations. Bull. Georgian Natl. Acad. Sci. 2011, 5, 17–24. [Google Scholar]
- Avalishvili, G.; Avalishvili, M.; Miara, B. Nonclassical problems with nonlocal initial conditions for second-order evolution equations. Asymptot. Anal. 2012, 76, 171–192. [Google Scholar] [CrossRef]
- Henriqueza, H.R.; Poblete, V.; Pozo, J.C. Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 2014, 412, 1064–1083. [Google Scholar] [CrossRef]
- Avalishvili, G.; Avalishvili, M. Nonclassical problem for ultraparabolic equation in abstract spaces. J. Funct. Spaces 2016, 2016, 5687920. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Xiao, T.-J. Semilinear integrodifferential equations with nonlocal initial conditions. Comput. Math. Appl. 2004, 47, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-K.; Li, W. Existence results for dynamic inclusions on time scales with nonlocal initial conditions. Comput. Math. Appl. 2007, 53, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Rong-Nian Wang, R.-N.; Chen, D. On a class of retarded integro-differential equations with nonlocal initial conditions. Comput. Math. Appl. 2010, 59, 3700–3709. [Google Scholar] [CrossRef] [Green Version]
- Lizama, C.; Pozo, J.C. Existence of mild solutions for a semilinear integrodifferential equation with nonlocal initial conditions. Abstr. Appl. Anal. 2012, 2012, 647103. [Google Scholar] [CrossRef]
- Burlica, M.-D.; Necula, M.; Rosu, D.; Vrabie, I.I. Delay Differential Equations Subjected to Nonlocal Initial Conditions; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- De Andrade, B.; Cuevas, C.; Soto, H. On fractional heat equations with non-local initial conditions. Proc. Edinb. Math. Soc. 2016, 59, 65–76. [Google Scholar] [CrossRef]
- Mckee, S.; Cuminato, J.A. Nonlocal diffusion, a Mittag–Leffler function and a two-dimensional Volterra integral equation. J. Math. Anal. Appl. 2015, 423, 243–252. [Google Scholar] [CrossRef]
- Tuan, N.H.; Triet, N.A.; Luc, N.H.; Phuong, N.D. On a time fractional diffusion with nonlocal in time conditions. Adv. Differ. Equ. 2021, 2021, 204. [Google Scholar] [CrossRef]
- Aharonov, Y.; Colombo, F.; Sabadini, I.; Struppa, D.C.; Tollaksen, J. On the Cauchy problem for the Schrödinger equation with superoscillatory initial data. J. Math. Pures Appl. 2013, 99, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.; Zheludev, N.; Aharonov, Y.; Colombo, F.; Sabadini, I.; Struppa, D.C.; Tollaksen, J.; Rogers, E.T.F.; Qin, F.; Hong, M.; et al. Roadmap on superoscillations. J. Opt. 2019, 21, 053002. [Google Scholar] [CrossRef]
- Aharonov, Y.; Colombo, F.; Sabadini, I.; Shushi, T.; Struppa, D.C.; Tollaksen, J. A new method to generate superoscillating functions and supershifts. Proc. R. Soc. A 2021, 477, 20210020. [Google Scholar] [CrossRef]
- Fattorini, H. Second Order Linear Differential Equations in Banach Spaces; North-Holland: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Gavrilyuk, I.; Makarov, V.; Vasylyk, V. Exponentially Convergent Algorithms for Abstract Differential Equations, Frontiers in Mathematics; Birkhaauser-Springer Basel AG: Basel, Switzerland, 2011. [Google Scholar]
- Sytnyk, D. Parallel numerical method for nonlocal-in-time Schroödinger equation. J. Coupled Syst. Multiscale Dyn. 2017, 5, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Bambusi, D.; Grebert, B.; Maspero, A.; Robert, D. Growth of Sobolev norms for abstract linear Schrodinger equations. J. Eur. Math. 2021, 23, 557–583. [Google Scholar] [CrossRef]
- Ashyralyev, A. A note on the Bitsadze–Samarskii type nonlocal boundary value problem in a Banach space. J. Math. Anal. Appl. 2008, 344, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Le Bris, C.; Mirrahimi, M.; Rabitz, H.; Turinici, G. Hamiltonian identification for quantum systems: Well-posedness and numerical approaches. ESAIM Control Optim. Calc. Var. 2007, 13, 378–395. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Liu, Y.-X.; Wu, R.-B. Identification of time-varying signals in quantum systems. Phys. Rev. A 2021, 103, 022612. [Google Scholar] [CrossRef]
- Tan, L.Y.; Dong, D.Y.; Li, D.W.; Xue, S.B. Quantum Hamiltonian Identification with Classical Colored Measurement Noise. IEEE Trans. Control Syst. Technol. 2021, 29, 1356–1363. [Google Scholar] [CrossRef]
- Kuwahara, T.; Mori, T.; Saito, K. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. 2016, 367, 96–124. [Google Scholar] [CrossRef] [Green Version]
- Lazarides, A.; Das, A.; Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 2015, 115, 030402. [Google Scholar] [CrossRef] [Green Version]
- Verdeny, A.; Mintert, F. Tunable Chern insulator with optimally shaken lattices. Phys. Rev. A 2015, 92, 063615. [Google Scholar] [CrossRef] [Green Version]
- Daners, D. Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Mathematics Series; Longman; CRC Press: Boca Raton, FL, USA, 1992; Volume 279. [Google Scholar]
- Verdeny, A.; Puig, J.; Mintert, F. Quasi-periodically driven quantum systems. Z. Naturforsch. A 2016, 71, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Li, B.; Yang, X.; Wan, S. A general time-periodic driving approach to realize topological phases in cold atomic systems. Sci. Rep. 2015, 5, 16197. [Google Scholar] [CrossRef] [Green Version]
- Gardas, B.; Dajka, J. Multi-photon Rabi model: Generalized parity and its applications. Phys. Lett. A 2013, 377, 3205–3208. [Google Scholar] [CrossRef]
- Le Hur, K.; Henriet, L.; Petrescu, A.; Plekhanov, K.; Roux, G.; Schiró, M. Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light. Comptes Rendus Phys. 2016, 17, 808–835. [Google Scholar] [CrossRef] [Green Version]
- Le Bellac, M. A Short Introduction to Quantum Information and Quantum Computation; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bunoiu, R.; Precup, R. Vectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditions. Appl. Anal. 2016, 95, 731–747. [Google Scholar] [CrossRef]
- Ashyralyev, A.; Sirma, A. Nonlocal boundary value problems for the Schrödinger equation. Comput. Math. Appl. 2008, 55, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Byszewski, L. Uniqueness of solutions of parabolic semilinear nonlocal-boundary problems. J. Math. Anal. Appl. 1992, 165, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Tsamatos, P.C. Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 1997, 210, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.L.; Sytnyk, D.O.; Vasylyk, V.B. Existence of the solution to a nonlocal-in-time evolutional problem. Nonlinear Anal. Model. Control 2014, 19, 432–447. [Google Scholar] [CrossRef]
- Haase, M. The Functional Calculus for Sectorial Operators; Birkhauser: Basel, Switzerland, 2006. [Google Scholar]
- Haase, M. Functional calculus for groups and applications to evolution equations. J. Evol. Equ. 2007, 7, 529–554. [Google Scholar] [CrossRef] [Green Version]
- Munkres, J.R. Topology; Pearson: London, UK, 2015. [Google Scholar]
- El-Nabulsi, R.M. Time-fractional Schrödinger equation from path integral and its implications in quantum dots and semiconductors. Eur. Phys. J. Plus 2018, 133, 394. [Google Scholar] [CrossRef]
- Witman, D.R.; Gunzburger, M.; Peterson, J. Reduced-order modeling for nonlocal diffusion problems. Int. J. Numer. Meth. Fluids 2017, 83, 307–327. [Google Scholar] [CrossRef]
- Lyngaas, I.; Peterson, J.S. Using radial basis function-generated quadrature rules to solve nonlocal continuum models. Numer. Methods Partial Differ. Equ. 2021. [Google Scholar] [CrossRef]
- Melnik, R.; Roberts, A.J.; Thomas, K.A. Modeling dynamics of shape memory alloys via computer algebra. In Proceedings of the 1999 Symposium on Smart Structures and Materials, Mathematics and Control in Smart Structures, Newport Beach, CA, USA, 3–4 March 1999; Volume 3667, pp. 290–301. [Google Scholar]
- Melnik, R.; Roberts, A.J. Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. ZAMM-Z. Angew. Math. Mech. 2003, 83, 93–104. [Google Scholar] [CrossRef]
- Melnik, R.; Roberts, A.J. Computational models for multiscale coupled dynamic problems. Future Gener. Comput. Syst. 2004, 20, 453–464. [Google Scholar] [CrossRef]
- Roberts, A.J. Model Emergent Dynamics in Complex Systems; SIAM: Philadelphia, PA, USA, 2014. [Google Scholar]
- Sytnyk, D.O. Exponentially Convergent Methods for the Nonlocal Abstract Cauchy Problem and Nonlinear Boundary Value Problems. Ph.D. Thesis, Institute of Mathematics, Ukr. National Academy of Sciences, Kiev, Ukraine, 2012. [Google Scholar]
- Milovanović, G.V.; Rassias, T.M. Inequalities for Polynomial Zeros, in Survey on Classical Inequalities; Rassias, T.M., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 162–202. [Google Scholar]
- Milovanović, G.V.; Rassias, T.M. Distribution of zeros and inequalities for zeros of algebraic polynomials, in Functional Equations and Inequalities. Funct. Equ. Inequal. 2000, 518, 171–204. [Google Scholar]
- Henrici, P. Applied and Computational Complex Analysis, Vol. 1: Power Series, Integration, Conformal Mapping, Location of Zeros; John Wiley & Sons: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Atanassova, L.; Kyurkchiev, N.; Yamamoto, T. Methods for computing all roots of a polynomial simultaneously: Known results and open problems. In Inclusion Methods for Nonlinear Problems. Computing Supplementa; Herzberger, J., Ed.; Springer: Vienna, Austria, 2003; Volume 16, pp. 23–35. [Google Scholar]
- Chakraverty, S.; Jeswal, S.K. Applied Artificial Neural Network Methods for Engineers and Scientists: Solving Algebraic Equations; World Scientific: Singapore, 2021. [Google Scholar]
- Rump, S.M. Ten methods to bound multiple roots of polynomials. J. Comput. Appl. Math. 2003, 156, 403–432. [Google Scholar] [CrossRef] [Green Version]
- Batra, P. On the Quality of Some Root-Bounds, Mathematical Aspects of Computer and Information Sciences: Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9582. [Google Scholar]
- Moroz, G. New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems. arXiv 2021, arXiv:2106.02505. [Google Scholar]
- Fujiwara, M. Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tohoku Math. J. 1916, 10, 167–171. [Google Scholar]
- Linden, H. Bounds for the zeros of polynomials from eigenvalues and singular values of some companion matrices. Linear Algebra Appl. 1998, 271, 41–82. [Google Scholar] [CrossRef]
- Vasylyk, V.; Makarov, V. Exponentially convergent method for the first-order differential equation in a Banach space with integral nonlocal condition. Ukr. Math. J. 2015, 66, 8. [Google Scholar] [CrossRef]
- Vasylyk, V.; Makarov, V. Exponentially convergent method for an abstract nonlocal problem with integral nonlinearity. Ukr. Math. J. 2017, 68, 12. [Google Scholar] [CrossRef]
- Hernandez, E. On abstract differential equations with state dependent non-local conditions. J. Math. Anal. Appl. 2018, 466, 408–425. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Ponce, R.; Yang, X.-S. Solvability of fractional differential inclusions with nonlocal initial conditions via resolvent family of operators. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 33–44. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Fouad, H.A. On a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions. Mathematics 2021, 9, 2111. [Google Scholar] [CrossRef]
- Tuan, N.A.; O’Regan, D.; Baleanu, D.; Tuan, N.H. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evol. Equ. Control. Theory 2020. [Google Scholar] [CrossRef]
- Benedetti, I.; Ciani, S. Evolution equations with nonlocal initial conditions and superlinear growth. arXiv 2021, arXiv:2107.04308. [Google Scholar]
- Carasso, A.S. Reconstructing the past from imprecise knowledge of the present: Effective non-uniqueness in solving parabolic equations backward in time. Math. Methods Appl. Sci. 2013, 36, 3. [Google Scholar] [CrossRef]
- Carasso, A.S. Stabilized backward in time explicit marching schemes in the numerical computation of ill-posed time-reversed hyperbolic/parabolic systems. Inverse Probl. Sci. Eng. 2019, 27, 134–165. [Google Scholar] [CrossRef]
- Caraballo, T.; Ngoc, T.B.; Thach, T.N.; Tuan, N.H. On a stochastic nonclassical diffusion equation with standard and fractional Brownian motion. Stochastics Dyn. 2021, 2021, 2140011. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Khoa, V.A.; Vo, V.A. Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 2019, 51, 60–85. [Google Scholar] [CrossRef] [Green Version]
- Khoa, V.A.; Bidney, G.W.; Klibanov, M.V.; Nguyen, L.H.; Nguyen, L.H.; Sullivan, A.J.; Astratov, V.N. Convexification and experimental data for a 3D inverse scattering problem with the moving point source. Inverse Probl. 2020, 36, 085007. [Google Scholar] [CrossRef]
- Klibanov, M.V.; Le, T.T.; Nguyen, L.H.; Sullivan, A.; Nguyen, L. Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data. arXiv 2021, arXiv:2104.11392. [Google Scholar]
- Melnikova, I.V.; Filinkov, A. Abstract Cauchy Problems: Three Approaches; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Makarov, V.L.; Vasylyk, V.B.; Sytnyk, D.O. Parallel numerical method for abstract final value problem based on nonlocal regularization. Collect. Works Inst. Math. NAS Ukr. 2016, 13, 31–46. [Google Scholar]
- Peyre, G.; Bougleux, S.; Cohen, L. Non-local regularization of inverse problems. Inverse Probl. Imaging 2011, 5, 511–530. [Google Scholar] [CrossRef]
- Yang, Z.; Jacob, M. Nonlocal regularization of inverse problems: A unified variational framework. IEEE Trans. Image Process. 2013, 22, 3192–3203. [Google Scholar] [CrossRef]
- Benning, M.; Burger, M. Modern regularization methods for inverse problems. Acta Numer. 2018, 27, 1–111. [Google Scholar] [CrossRef] [Green Version]
- Holler, G.; Kunisch, K. Learning nonlocal regularization operators. Math. Control. Relat. Fields 2021. [Google Scholar] [CrossRef]
- Sytnyk, D.; Melnik, R. Revised requirements for multiband Hamiltonians of Luttinger–Kohn theory for inverse design and other data-driven applications. arXiv 2021, arXiv:1808.06988. [Google Scholar]
- Bunder, J.E.; Roberts, A.J. Nonlinear emergent macroscale PDEs, with error bound, for nonlinear microscale systems. SN Appl. Sci. 2021, 3, 703. [Google Scholar] [CrossRef]
- Maple User Manual, Maplesoft; A Division of Waterloo Maple Inc.: Waterloo, ON, Canada, 2021.
- Aida-zade, K.; Rahimov, A. Numerical method of parametrical identification for nonlocal parabolic problems. In Proceedings of the IV International Conference “Problems of Cybernetics and Informatics” (PCI), Baku, Azerbaijan, 12–14 September 2012; pp. 1–4. [Google Scholar]
- Burkovska, O.; Gunzburger, M. Affine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models. SIAM J. Numer. Anal. 2020, 58, 1469–1494. [Google Scholar] [CrossRef]
- Rahimov, A.B. On the Numerical Solution to an Inverse Problem of Recovering a Source of Special Type in a Parabolic Equation. Cybern. Syst. Anal. 2020, 56, 611–620. [Google Scholar] [CrossRef]
- Pang, G.; D’Elia, M.; Parks, M.; Karniadakis, G.E. nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications. J. Comput. Phys. 2020, 422, 109760. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X. Deep-learning schemes for full-wave nonlinear inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1849. [Google Scholar] [CrossRef]
- Harlim, J.; Jiang, S.W.; Liang, S.; Yang, H. Machine learning for prediction with missing dynamics. J. Comput. Phys. 2021, 428, 109922. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Kapral, R. Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution. J. Chem. Phys. 2012, 137, 22A507. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, M.R.; Pollock, F.A. Discrete memory kernel for multitime correlations in non-Markovian quantum processes. Phys. Rev. A 2020, 102, 052206. [Google Scholar] [CrossRef]
- Kaupuzs, J.; Rimsans, J.; Melnik, R. Critical phenomena and phase transitions in large lattices with Monte-Carlo based non-perturbative approaches. Ukr. J. Phys. 2011, 56, 845–854. [Google Scholar]
- Kaupuzs, J.; Melnik, R.; Rimsans, J. Corrections to finite-size scaling in the 3D Ising model based on nonperturbative approaches and Monte Carlo simulations. Int. J. Mod. Phys. 2017, 28, 1750044. [Google Scholar] [CrossRef] [Green Version]
- Kaupuzs, J.; Melnik, R. Non-perturbative Approaches in Nanoscience and Corrections to Finite-Size Scaling. In Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications; Bonilla, L., Kaxiras, E., Melnik, R., Eds.; Springer Proceedings in Mathematics & Statistics: Berlin, Germany, 2019; Volume 232, pp. 65–73. [Google Scholar]
- Kaupuzs, J.; Melnik, R. A new method of solution of the Wetterich equation and its applications. J. Phys. A Math. Theory 2020, 53, 415002. [Google Scholar] [CrossRef]
- Pfalzgraff, W.C.; Montoya-Castillo, A.; Kelly, A.; Markl, T.E. Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics. J. Chem. Phys. 2019, 150, 244109. [Google Scholar] [CrossRef]
- Badu, S.; Melnik, R. NMR properties of Fenna–Matthews–Olson light harvesting complex: Photosynthesis and its biomedical applications. In Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering, Kyiv, UKraine, 29 May–2 June 2017; pp. 318–321. [Google Scholar]
- Badu, S.; Melnik, R.; Singh, S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. Mol. Simul. 2020, 46, 1094–1115. [Google Scholar] [CrossRef]
- Badu, S.; Prabhakar, S.; Melnik, R. Component spectroscopic properties of light-harvesting complexes with DFT calculations. Biocell 2020, 44, 279–291. [Google Scholar] [CrossRef]
- Badu, S.; Melnik, R.; Singh, S. Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. Appl. Sci. 2020, 10, 6821. [Google Scholar] [CrossRef]
- Chorin, A.J.; Stinis, P. Problem reduction, renormalization, and memory. Commun. Appl. Math. Comput. Sci. 2006, 1, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Breuer, H.P. Extension of the Nakajima–Zwanzig approach to multitime correlation functions of open systems. Phys. Rev. A 2015, 92, 032113. [Google Scholar] [CrossRef] [Green Version]
- Te Vrugt, M.; Wittkowski, R. Projection operators in statistical mechanics: A pedagogical approach. Eur. J. Phys. 2020, 41, 045101. [Google Scholar] [CrossRef]
- Venturi, D.; Karniadakis, G.E. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems. Proc. R. Soc. A 2014, 470, 20130754. [Google Scholar] [CrossRef] [Green Version]
- Montoya-Castilloa, A.; Reichman, D.R. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics. J. Chem. Phys. 2016, 144, 184104. [Google Scholar] [CrossRef] [Green Version]
- Montoya-Castilloa, A.; Reichman, D.R. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. J. Chem. Phys. 2017, 146, 084110. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.K.; Lu, F. Data-driven model reduction, Wiener projections, and the Koopman–Mori–Zwanzig formalism. J. Comput. Phys. 2021, 424, 109864. [Google Scholar] [CrossRef]
- Megier, N.; Smirne, A.; Vacchini, B. Evolution equations for quantum semi-Markov dynamics. Entropy 2020, 22, 796. [Google Scholar] [CrossRef]
- Abal, G.; Siri, R.; Romanelli, A.; Donangelo, R. Quantum walk on the line: Entanglement and nonlocal initial conditions. Phys. Rev. A 2006, 73, 042302. [Google Scholar] [CrossRef] [Green Version]
- Addario-Berry, L.; Berestycki, J.; Penington, S. Branching Brownian motion with decay of mass and the nonlocal Fisher-KPP equation. Commun. Pure Appl. Math. 2019, 72, 2487–2577. [Google Scholar] [CrossRef] [Green Version]
- Champagnat, N.; Henry, B. A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources. Ann. Appl. Probab. 2019, 29, 2175–2216. [Google Scholar] [CrossRef] [Green Version]
- Felsberger, L.; Koutsourelakis, P.-S. Physics-constrained, data-driven discovery of coarse-grained dynamics. Commun. Comput. Phys. 2019, 25, 1259–1301. [Google Scholar] [CrossRef] [Green Version]
- Harlim, J.; Li, X. Parametric reduced models for the nonlinear Schrödinger equation. Phys. Rev. E 2015, 91, 053306. [Google Scholar] [CrossRef] [Green Version]
- Gilani, F.; Giannakis, D.; Harlim, J. Kernel-based prediction of non-Markovian time series. Physica D 2021, 418, 132829. [Google Scholar] [CrossRef]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Frensley, W.R. Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 1990, 62, 745. [Google Scholar] [CrossRef]
- Mallayya, K.; Rigol, M. Heating rates in periodically driven strongly interacting quantum many-body systems. Phys. Rev. Lett. 2019, 123, 240603. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, S.; Rogan, J.; Valdivia, J.A. Speeding up maximum population transfer in periodically driven multi-level quantum systems. Sci. Rep. 2019, 9, 16270. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.N.; Sato, M. General description for nonequilibrium steady states in periodically driven dissipative quantum systems. Sci. Adv. 2020, 6, eabb4019. [Google Scholar] [CrossRef]
- Boyers, E.; Crowley, P.J.D.; Chandran, A.; Sushkov, A.O. Exploring 2D synthetic quantum Hall physics with a quasiperiodically driven qubit. Phys. Rev. Lett. 2020, 125, 160505. [Google Scholar] [CrossRef]
- Chan, C.K. Bound states of two-photon Rabi model at the collapse point. J. Phys. A Math. 2020, 53, 385303. [Google Scholar]
- Wang, Y.M.; Su, Y.; Liu, M.X.; You, W.L. Entanglement measures in the quantum Rabi model. Physica A 2020, 556, 124792. [Google Scholar] [CrossRef]
- Pitowski, I. Quantum Probability—Quantum Logic; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Tucsnak, M.; Weiss, G. Observation and Control for Operator Semigroup; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bohm, A. The dynamical evolution in quantum physics and its semi-group. In Physical and Mathematical Aspects of Symmetries; Duarte, S., Gazeau, J.P., Faci, S., Micklitz, T., Scherer, R., Toppan, F., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bebiano, N.; da Providencia, J.; Nishiyama, S.; da Providencia, J.P. A quantum system with a non-Hermitian Hamiltonian. J. Math. Phys. 2020, 61, 082106. [Google Scholar] [CrossRef]
- Frith, T. Time-dependence in non-Hermitian quantum systems. arXiv 2020, arXiv:2002.01977. [Google Scholar]
- Bebiano, N.; da Providencia, J.; da Providencia, J.P. Toward non-Hermitian quantum statistical thermodynamics. J. Math. Phys. 2020, 61, 022102. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, K.; Shiozaki, K.; Ueda, M.; Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 2019, 9, 041015. [Google Scholar] [CrossRef] [Green Version]
- Scheibner, C.; Souslov, A.; Banerjee, D.; Surówka, P.; Irvine, W.T.M.; Vitelli, V. Odd elasticity. Nat. Phys. 2020, 16, 475. [Google Scholar] [CrossRef]
- Melnik, R. Topological analysis of eigenvalues in engineering computations. Eng. Simul. 2000, 17, 386–416. [Google Scholar] [CrossRef] [Green Version]
- Krejcirik, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 2015, 56, 103513. [Google Scholar] [CrossRef]
- Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. 2009, 42, 153001. [Google Scholar] [CrossRef]
- Sergi, A.; Zloshchastiev, K.G. Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 2013, 27, 1350163. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G.; Sergi, A. Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical systems. J. Mod. Opt. 2014, 61, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Zloshchastiev, K.G. Quantum entropy of systems described by non-Hermitian Hamiltonians. J. Stat. Mech. Theory Exp. 2016, 2016, 033102. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. PT-symmetric quantum theory. J. Phys. Conf. Ser. 2015, 631, 012002. [Google Scholar] [CrossRef]
- Lee, C.H.; Li, L.H.; Thomale, R.; Gong, J.B. Unraveling non-Hermitian pumping: Emergent spectral singularities and anomalous responses. Phys. Rev. B 2020, 102, 085151. [Google Scholar] [CrossRef]
- Huber, J.; Kirton, P.; Rotter, S.; Rabl, P. Emergence of PT-symmetry breaking in open quantum systems. SciPost Phys. 2020, 9, 052. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Shen, H.Z.; Hou, S.C.; Yi, X.X. Exceptional points and dynamics of a non-Hermitian two-level system without PT symmetry. EPL 2020, 131, 34001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sytnyk, D.; Melnik, R. Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics. Math. Comput. Appl. 2021, 26, 73. https://doi.org/10.3390/mca26040073
Sytnyk D, Melnik R. Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics. Mathematical and Computational Applications. 2021; 26(4):73. https://doi.org/10.3390/mca26040073
Chicago/Turabian StyleSytnyk, Dmytro, and Roderick Melnik. 2021. "Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics" Mathematical and Computational Applications 26, no. 4: 73. https://doi.org/10.3390/mca26040073
APA StyleSytnyk, D., & Melnik, R. (2021). Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics. Mathematical and Computational Applications, 26(4), 73. https://doi.org/10.3390/mca26040073