Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects
Abstract
:1. Introduction
2. Formulation
3. Engineering Contents of Interest
3.1. Nusselt Number
3.2. Sherwood Number
4. Entropy
5. Solution Methodology
6. Graphical Results and Review
6.1. Velocity
6.2. Temperature
6.3. Concentration
6.4. Entropy Generation Rate
7. Closing Points
- The theermal field and velocity for the magnetic field had opposing trends.
- A decrease in velocity was noted for the Forchheimer number and suction variable.
- The velocity versus the porosity parameter was decreased.
- Similar behavior for the concentration and temperature against suction was noticed.
- The temperatures for the Eckert and Prandtl numbers were dissimilar.
- Radiation for the entropy and temperature had a similar role.
- The concentration decayed via larger approximation of the Soret number and reaction parameter.
- A decay in concentration against the Schmidt number held.
- Entropy generation enhancement against the Brinkman number and diffusion variable was noticed.
- The entropy rate was boosted with variation in the diffusion variable.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Velocity components (ms) | Cartesian coordinates (m) | ||
t | Time (s) | Suction velocity (ms) | |
Density (kgm) | Electrical conductivity (Sm) | ||
T | Temperature (K) | Specific heat (JkgK) | |
Porous medium permeability (m) | Drag coefficient | ||
Wall temperature (K) | Thermal diffusivity (m s) | ||
k | Thermal conductivity (WmK) | Ambient temperature (K) | |
Stefan–Boltzman constant (WmK) | Thermal diffusion ratio | ||
Concentration susceptibility | Mean absorption coefficient (cm) | ||
C | Concentration | Reaction rate (s) | |
Wall concentration | Mass diffusivity (m s) | ||
Reference length (m) | Ambient concentration | ||
Stretching velocity (ms) | a | Stretching rate constant (s) | |
Nusselt number | Heat flux (Wm) | ||
Sherwood number | Mass flux | ||
R | Molar gas constant (kgm sKmol) | M | Magnetic variable |
Porosity variable | Forchheimer number | ||
S | Suction parameter | Pr | Prandtl number |
Radiation variable | Dufour number | ||
Eckert number | Reaction variable | ||
Soret number | Re | Reynold number | |
Schmidt number | Entropy rate | ||
Temperature ratio variable | Brinkman number | ||
Concentration ratio variable | L | Diffusion variable | |
Mean fluid temperature (K) | Magnetic field strength |
References
- Darcy, H. Les Fontaines Publiques de la Ville dr Dijion; Dalmont, V., Ed.; Typ. Hennuyer: Paris, France, 1856; pp. 647–658. [Google Scholar]
- Forchheimer, P. Wasserbewegung durch boden. Z. Vereins Dtsch. Ingenieure 1901, 45, 1782–1788. [Google Scholar]
- Muskat, M. The Flow of Homogeneous Fluids through Porous Media; JW Edwards, Inc.: Ann Arbor, MI, USA, 1946. [Google Scholar]
- Hayat, T.; Muhammad, T.; Al-Mezal, S.; Liao, S.J. Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 2355–2369. [Google Scholar] [CrossRef]
- Pal, D.; Mondal, H. Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. Commun. Heat Mass Transf. 2012, 39, 913–917. [Google Scholar] [CrossRef]
- Mallawi, F.; Ullah, M.Z. Conductivity and energy change in Carreau nanofluid flow along with magnetic dipole and Darcy-Forchheimer relation. Alex. Eng. J. 2021, 60, 3565–3575. [Google Scholar] [CrossRef]
- Alshomrani, A.S.; Ullah, M.Z. Effects of homogeneous-heterogeneous reactions and convective condition in Darcy-Forchheimer flow of carbon nanotubes. J. Heat Transf. 2019, 141, 012405. [Google Scholar] [CrossRef]
- Seth, G.S.; Mandal, P.K. Hydromagnetic rotating flow of Casson fluid in Darcy-Forchheimer porous medium. MATEC Web Conf. 2018, 192, 02059. [Google Scholar] [CrossRef]
- Khan, S.A.; Hayat, T.; Alsaedi, A. Irreversibility analysis in Darcy-Forchheimer flow of viscous fluid with Dufour and Soret effects via finite difference method. Case Stud. Therm. Eng. 2021, 26, 101065. [Google Scholar] [CrossRef]
- Azam, M.; Xu, T.; Khan, M. Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder. Int. Commun. Heat Mass Transf. 2020, 118, 104832. [Google Scholar] [CrossRef]
- Wu, Y.; Kou, J.; Sun, S. Matrix acidization in fractured porous media with the continuum fracture model and thermal Darcy-Brinkman-Forchheimer framework. J. Pet. Sci. Eng. 2022, 211, 110210. [Google Scholar] [CrossRef]
- Haider, F.; Hayat, T.; Alsaedi, A. Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alex. Eng. J. 2021, 60, 3047–3056. [Google Scholar] [CrossRef]
- Tayyab, M.; Siddique, I.; Jarad, F.; Ashraf, M.A.; Ali, B. Numerical solution of 3D rotating nanofluid flow subject to Darcy-Forchheimer law, bio-convection and activation energy. S. Afr. J. Chem. Eng. 2022, 40, 48–56. [Google Scholar] [CrossRef]
- Nawaz, M.; Sadiq, M.A. Unsteady heat transfer enhancement in Williamson fluid in Darcy-Forchheimer porous medium under non-Fourier condition of heat flux. Case Stud. Therm. Eng. 2021, 28, 101647. [Google Scholar] [CrossRef]
- Ali, L.; Wang, Y.; Ali, B.; Liu, X.; Din, A.; Mdallal, Q.A. The function of nanoparticle’s diameter and Darcy-Forchheimer flow over a cylinder with effect of magnetic field and thermal radiation. Case Stud. Therm. Eng. 2021, 28, 101392. [Google Scholar] [CrossRef]
- Bejawada, S.G.; Reddy, Y.D.; Jamshed, W.; Eid, M.R.; Safdar, R.; Nisar, K.S.; Isa, S.S.P.M.; Alam, M.M.; Parvin, S. 2D mixed convection non-Darcy model with radiation effect in a nanofluid over an inclined wavy surface. Alex. Eng. J. 2022, 61, 9965–9976. [Google Scholar] [CrossRef]
- Eid, M.R.; Mahny, K.L.; Al-Hossainy, A.F. Homogeneous-heterogeneous catalysis on electromagnetic radiative Prandtl fluid flow: Darcy-Forchheimer substance scheme. Surf. Interfaces 2021, 24, 101119. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Madan, G.L. Dufour Effect in Liquids. J. Chem. Phys. 1965, 43, 4179–4180. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Nigam, R.K. Cross-phenomenological coefficients. Part 6—Dufour effect in gases. Trans. Faraday Soc. 1966, 62, 3325–3330. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Yadava, B.L.S. Dufour effect in liquid mixtures. J. Chem. Phys. 1969, 51, 2826–2830. [Google Scholar] [CrossRef]
- Moorthy, M.B.K.; Senthilvadivu, K. Soret and Dufour effects on natural convection flow past a vertical surface in a porous medium with variable viscosity. J. Math. Phys. 2012, 2012, 634806. [Google Scholar] [CrossRef]
- El-Arabawy, H.A.M. Soret and dufour effects on natural convection flow past a vertical surface in a porous medium with variable surface temperature. J. Math. Stat. 2009, 5, 190–198. [Google Scholar] [CrossRef]
- Reddy, G.J.; Raju, R.S.; Manideep, C.; Rao, J.A. Thermal diffusion and diffusion thermo effects on unsteady MHD fluid flow past a moving vertical plate embedded in porous medium in the presence of Hall current and rotating system. Trans. A. Razmadze Math. Inst. 2016, 170, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Dursunkaya, Z.; Worek, W.M. Diffusion-thermo and thermal-diffusion effects in transient and steady natural convection from vertical surface. Int. J. Heat Mass Transf. 1992, 35, 2060–2067. [Google Scholar] [CrossRef]
- Khan, S.A.; Hayat, T.; Khan, M.I.; Alsaedi, A. Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. Int. J. Hydrogen Energy 2020, 45, 4552–14564. [Google Scholar] [CrossRef]
- Bekezhanova, V.B.; Goncharova, O.N. Influence of the Dufour and Soret effects on the characteristics of evaporating liquid flows. Int. J. Heat Mass Transf. 2020, 154, 119696. [Google Scholar] [CrossRef]
- Jiang, N.; Studer, E.; Podvin, B. Physical modeling of simultaneous heat and mass transfer: Species interdiffusion, Soret effect and Dufour effect. Int. J. Heat Mass Transf. 2020, 156, 119758. [Google Scholar] [CrossRef]
- Bejan, A. Second law analysis in heat transfer. Energy Int. J. 1980, 5, 721–732. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Buonomo, B.; Pasqua, A.; Manca, O.; Nappo, S.; Nardini, S. Entropy generation analysis of laminar forced convection with nanofluids at pore length scale in porous structures with Kelvin cells. Int. Commun. Heat Mass Transf. 2022, 132, 105883. [Google Scholar] [CrossRef]
- Khan, S.A.; Hayat, T.; Alsaedi, A.; Ahmad, B. Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renew. Sustain. Energy Rev. 2021, 140, 110739. [Google Scholar] [CrossRef]
- Tayebi, T.; Öztop, H.F.; Chamkha, A.J. Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Therm. Sci. Eng. Prog. 2020, 19, 100605. [Google Scholar] [CrossRef]
- Abbas, Z.; Naveed, M.; Hussain, M.; Salamat, N. Analysis of entropy generation for MHD flow of viscous fluid embedded in a vertical porous channel with thermal radiation. Alex. Eng. J. 2020, 59, 3395–3405. [Google Scholar] [CrossRef]
- Rahmanian, S.; Koushkaki, H.R.; Shahsavar, A. Numerical assessment on the hydrothermal behaviour and entropy generation characteristics of boehmite alumina nanofluid flow through a concentrating photovoltaic/thermal system considering various shapes for nanoparticle. Sustain. Energy Technol. Assess. 2022, 52, 102143. [Google Scholar] [CrossRef]
- Nayak, M.K.; Mabood, F.; Dogonchi, A.S.; Khan, W.A. Electromagnetic flow of SWCNT/MWCNT suspensions with optimized entropy generation and cubic auto catalysis chemical reaction. Int. Commun. Heat Mass Transf. 2020, 2020, 104996. [Google Scholar] [CrossRef]
- Kumawat, C.; Sharma, B.K.; Al-Mdallal, Q.M.; Gorji, M.R. Entropy generation for MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer. Int. Commun. Heat Mass Transf. 2022, 133, 105954. [Google Scholar] [CrossRef]
- Liu, Y.; Jian, Y.; Tan, W. Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. Int. J. Heat Mass Transf. 2018, 127, 901–913. [Google Scholar] [CrossRef]
- Alotaibi, H.; Eid, M.R. Thermal analysis of 3D electromagnetic radiative nanofluid flow with suction/blowing: Darcy–Forchheimer scheme. Micromachines 2021, 12, 1395. [Google Scholar] [CrossRef]
- Eid, M.R.; Mabood, F. Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy–Forchheimer scheme. J. Therm. Anal. Calorim. 2021, 143, 2419–2436. [Google Scholar] [CrossRef]
- Swain, I.; Pattanayak, H.; Das, M.; Singh, T. Finite difference solution of free convective heat transfer of non-Newtonian power law fluids from a vertical plate. Glob. J. Pure Appl. Math. 2015, 11, 339–348. [Google Scholar]
- Adekanye, O.; Washington, T. Nonstandard finite difference scheme for a Tacoma narrows bridge model. Appl. Math. Model. 2018, 62, 223–236. [Google Scholar] [CrossRef]
- Hayat, T.; Ullah, H.; Ahmad, B.; Alhodaly, M.S. Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder. Int. Commun. Heat Mass Transf. 2021, 120, 104965. [Google Scholar] [CrossRef]
- Khan, Z.H.; Makinde, O.D.; Ahmad, R.; Khan, W.A. Numerical study of unsteady MHD flow and entropy generation in a rotating permeable channel with slip and Hall effects. Commun. Theor. Phys. 2018, 70, 641–650. [Google Scholar] [CrossRef]
- Bidin, B.; Nazar, R. Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur. J. Sci. Res. 2009, 33, 710–717. [Google Scholar]
Pr | Bidin and Nazar [44] | Recent Outcomes |
---|---|---|
1.0 | 0.9547 | 0.954710 |
2.0 | 1.4714 | 1.471409 |
3.0 | 1.8961 | 1.896115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.A.; Hayat, T. Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects. Math. Comput. Appl. 2022, 27, 80. https://doi.org/10.3390/mca27050080
Khan SA, Hayat T. Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects. Mathematical and Computational Applications. 2022; 27(5):80. https://doi.org/10.3390/mca27050080
Chicago/Turabian StyleKhan, Sohail A., and Tasawar Hayat. 2022. "Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects" Mathematical and Computational Applications 27, no. 5: 80. https://doi.org/10.3390/mca27050080
APA StyleKhan, S. A., & Hayat, T. (2022). Entropy Analysis for Hydromagnetic Darcy–Forchheimer Flow Subject to Soret and Dufour Effects. Mathematical and Computational Applications, 27(5), 80. https://doi.org/10.3390/mca27050080