Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects
Abstract
:1. Introduction
2. Problem Formulation
Model | Shape of Nanoparticles | Thermal Conductivity |
---|---|---|
I | Spherical | |
II | Spherical |
3. Numerical Procedure
4. Findings and Discussion
5. Conclusions
- ➢
- Fluid velocity rises with the Grashof number while it falls in the magnetic field.
- ➢
- The effects of Prandtl number and viscous dissipation are to improve the velocity and temperature.
- ➢
- The Dufour effect raises the velocity and temperature while reducing due to the Soret effect.
- ➢
- Thermal conductivity is enhanced by heat sources and radiation.
- ➢
- With chemical reaction and Schmidt number, concentration decreases.
- ➢
- Rate of heat transfer accelerated with Du values and retards with the values of Q and Ec.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
B0 | Applied magnetic field |
C | Non-dimensional concentration |
Cp | Specific heat (constant pressure) |
C* | Species concentration |
C∞* | Free stream concentration |
Cw* | Species concentration at wall |
Du | Dufour number |
g | Acceleration due to gravity |
Gr | Grashof number |
K | Permeability parameter |
kf | Thermal conductivity of the base fluid |
ks | Thermal conductivity of the nanoparticles |
knf | Thermal conductivity of the nanofluid |
k* | Mean absorption coefficient |
M | Magnetic field parameter |
Nr | Radiation parameter |
Pr | Prandtl number |
Q | Heat generation parameter |
T | Non-dimensional temperature |
T* | Temperature |
T∞* | Free-stream temperature |
t* | Time |
Tw* | Temperature at wall |
Sc | Schmidt number |
Sr | Soret number |
φ | Solid volume fraction of the nanoparticle |
δ | Chemical reaction parameter |
λ | Buoyancy parameter |
u* | Velocity components along x*−y* direction |
u0 | Initial velocity |
nf | Nanofluid |
qr | Radiative heat flux |
σnf | Electrical conductivity of the nanofluid |
βnf | Thermal expansion coefficient of the nanofluid |
(x*, y*) | Dimensional co-ordinates |
ρnf | Nanofluid density |
μf | Viscosity of the base fluid |
Appendix A
References
- Choi, S.U.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ. Fed 1995, 231, 99–106. [Google Scholar]
- Upreti, H.; Pandey, A.K.; Kumar, M. MHD flow of Ag-water nanofluid over a flat porous plate with viscous-ohmic dissipation, suction/injection and heat generation/absorption. Alexander Eng. J. 2018, 57, 1839–1847. [Google Scholar] [CrossRef]
- Mishra, A.; Pandey, A.K.; Chamkha, A.J.; Kumar, M. Roles of nanoparticles and heat generation/absorption on MHD flow of Ag-H2O nanofluid via porous stretching/shrinking convergent/divergent channel. J. Egypt Math. Soc. 2020, 28, 17. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.; Negera, M. MHD slip flow of upper convected Maxwell nanofluid over stretching sheet with chemical reaction. J. Egypt. Math. Soc. 2020, 28, 7. [Google Scholar] [CrossRef] [Green Version]
- Kataria, H.R.; Patel, H.R. Effect of chemical reaction and heat generation/absorption on Magneto hydrodynamic(MHD) Casson fluid flow over an exponentially accelerated vertical plate embedded in porous medium with ramped wall temperature and ramped surface concentration. Propuls. Power Res. 2018, 8, 35–46. [Google Scholar] [CrossRef]
- Kumar, M.S.; Sandeep, N.; Kumar, B.R. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alex. Eng. J. 2017, 57, 2027–2034. [Google Scholar] [CrossRef]
- Swain, B.K.; Parida, B.C.; Kar, S.; Senapati, N. Viscous dissipation and joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous. Heliyon 2020, 6, e05338. [Google Scholar] [CrossRef]
- Muhammad, T.; Alishehzad, S.; Alsaedi, A. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 2018, 8, 365–371. [Google Scholar] [CrossRef]
- Reddy, G.J.; Srinivasa Raju, R.; Anand Rao, J. Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Eng. J. 2018, 4, 1907–1915. [Google Scholar] [CrossRef]
- Jha, B.; Aina, B. Impact of induced magnetic field on MHD natural convection flow in a vertical annular micro channel in the presence of Radial magnetic field. Propuls. Power Res. 2018, 7, 171–181. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Heat generation/absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet. Chin. J. Phys. 2020, 69, 118–133. [Google Scholar] [CrossRef]
- Raza, J.; Rohni, A.M.; Omar, Z. MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls. Int. J. Heat Mass Transf. 2016, 103, 336–340. [Google Scholar] [CrossRef]
- Soumya, D.O.; Gireesha, B.J.; Venkatesh, P. Planar Coquette flow of power law nanofluid with chemical reaction nano particle injection and variable thermal conductivity. Sage Publ. 2022, 236, 5257–5268. [Google Scholar]
- Sarafraz, M.M.; Pourmehran, O.; Yang, B.; Arjomandi, M.; Ellahi, R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int. J. Therm. Sci. 2020, 147, 106131. [Google Scholar] [CrossRef]
- Majeed, A.; Zeeshan, A.; Bhatti, M.M.; Ellahi, R. Heat transfer in magnetite (Fe3O4) nanoparticles suspended in conventional fluids: Refrigerant-134A (C2H2F4), kerosene (C10H22), and water (H2O) under the impact of dipole. Heat Transf. Res. 2020, 51, 217–232. [Google Scholar] [CrossRef]
- Mishra, A.; Pandey, A.K.; Kumar, M. Velocity, thermal and concentration slip effects on MHD silver-water nanofluid past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf. Res. 2019, 50, 1351–1367. [Google Scholar] [CrossRef]
- Megahed, A.M. Flow and heat transfer of non-Newtonian Sisko fluid past a nonlinearly stretching sheet with heat generation and viscous dissipation. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 492. [Google Scholar] [CrossRef]
- Elbashbeshy, M.A.R.; Abdelgaber, K.; Asker, H.G. Heat and mass transfer of a Maxwell nanofluid over a stretching surface with variable thickness embedded in porous medium. Int. J. Math. Comput. Sci. 2018, 4, 86–98. [Google Scholar]
- Hayat, T.; Ullah, I.; Muhammad, T.; Alsaedi, A. Radiative three-dimensional flow with Soret and Dufour effects. Int. J. Mech. Sci. 2017, 133, 829–837. [Google Scholar] [CrossRef]
- Saritha, K.; Rajasekhar, M.; Reddy, B. Combined effects of Soret and Dufour on MHD flow of a power-law fluid over flat plate in slip flow Rigime. Int. J. Appl. Mech. Eng. 2018, 23, 689–705. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.S.; Saritha, K. MHD Boundary Layer Slip Flow over a Flat Plate with Soret and Dufour effects. Appl. Appl. Math. Int. J. (AAM) 2019, 14, 31–43. [Google Scholar]
- Pattnaik, J.R.; Dash, G.C.; Singh, S. Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature. Ain Shams Eng. J. 2017, 8, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Sheikholeslami, M.; GorjiBandpy, M.; Ellahi, R.; Hassan, M.; Soleimani, S. Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J. Magn. Magn. Mater. 2014, 349, 188–200. [Google Scholar] [CrossRef]
- Rashidi, M.; Ganesh, N.V.; Hakeem, A.A.; Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liquids 2014, 198, 234–238. [Google Scholar] [CrossRef]
- Madhu, M.; Kishan, N.; Chamkha, A.J. MHD flow of a non-Newtonian nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation with heat source/sink. Eng. Comput. 2016, 33, 1610–1626. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A. Magnetic field effect on Sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip. Mathematics 2021, 9, 921. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Abu Bakar, S.; Ishak, A. Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure. Case Stud. Therm. Eng. 2021, 26, 101150. [Google Scholar] [CrossRef]
- Parasuraman, L.; Krishnamurthy, D. Prandtl boundary layer flow of a Casson nanofluid past a permeable vertical plate. Acta Tech. Corviniensis-Bull. Eng. 2019, 12, 95–100. [Google Scholar]
- Kumar, M.A.; Reddy, Y.D.; Rao, V.S.; Goud, B.S. Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsive started vertical plate. Case Stud. Therm. Eng. 2020, 24, 100826. [Google Scholar] [CrossRef]
- Chang, H.; Jwo, C.S.; Lo, C.H.; Tsung, T.T.; Kao, M.J.; Lin, H.M. Rheology of CuO Nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 2005, 10, 128–132. [Google Scholar]
- Rajesh, V.; Mallesh, M.P.; Beg, O.A. Transient MHD free convection flow and heat transfer of nanofluid past an impulsively started vertical porous plate in the presence of viscous dissipation. Procedia Mater. Sci. 2015, 10, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Bejawada, S.G.; Yanala, D.R. Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate. Heat Transf. 2021, 50, 8553–8578. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: London, UK, 1881; Volume 1. [Google Scholar]
H2O | Al2O3 | Cu | |
---|---|---|---|
4179 | 765 | 8993 | |
997.1 | 3970 | 385 | |
0.613 | 40 | 401 | |
21 | 401 | 1.67 |
Q | Du | Ec | Nu |
---|---|---|---|
0.2 | 0.5 | 0.01 | 0.5765 |
0.5 | 0.2624 | ||
1.0 | −0.4015 | ||
1.0 | 0.5721 | ||
1.5 | 0.5701 | ||
0.02 | 0.5677 | ||
0.03 | 0.5601 |
Gr | M | λ | R | Present | Previous (Khan et al. [27]) | ||
---|---|---|---|---|---|---|---|
Cf | − | Cf | − | ||||
5 | 1 | 0.2 | 1 | 0.7295 | 1.1654 | 0.7296 | 1.1653 |
10 | 2.6396 | 2.6395 | |||||
3 | −0.2742 | 1.0512 | −0.2741 | 1.0511 | |||
5 | −0.9281 | 1.0488 | −0.9283 | 1.0488 | |||
0.3 | 0.586 | 0.5867 | |||||
0.4 | 0.4377 | 0.4378 | |||||
2 | 1.0480 | 0.7974 | 1.0479 | 0.7973 | |||
3 | 1.2629 | 0.6620 | 1.2629 | 1.2630 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kune, R.; Naik, H.S.; Reddy, B.S.; Chesneau, C. Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects. Math. Comput. Appl. 2022, 27, 102. https://doi.org/10.3390/mca27060102
Kune R, Naik HS, Reddy BS, Chesneau C. Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects. Mathematical and Computational Applications. 2022; 27(6):102. https://doi.org/10.3390/mca27060102
Chicago/Turabian StyleKune, Ramesh, Hari Singh Naik, Borra Shashidar Reddy, and Christophe Chesneau. 2022. "Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects" Mathematical and Computational Applications 27, no. 6: 102. https://doi.org/10.3390/mca27060102
APA StyleKune, R., Naik, H. S., Reddy, B. S., & Chesneau, C. (2022). Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects. Mathematical and Computational Applications, 27(6), 102. https://doi.org/10.3390/mca27060102