Feature Paper Collection of Mathematical and Computational Applications—2022
Author Contributions
Funding
Conflicts of Interest
References
- Stipsitz, M.; Sanchis-Alepuz, H. Approximating the steady-state temperature of 3d electronic systems with convolutional neural networks. Math. Comput. Appl. 2022, 27, 7. [Google Scholar] [CrossRef]
- Howard, R.M. Arbitrarily accurate analytical approximations for the error function. Math. Comput. Appl. 2022, 27, 14. [Google Scholar] [CrossRef]
- Sarmadi, S.; Winkle, J.J.; Alnahhas, R.N.; Bennett, M.R.; Josić, K.; Mang, A.; Azencott, R. Stochastic neural networks for automatic cell tracking in microscopy image sequences of bacterial colonies. Math. Comput. Appl. 2022, 27, 22. [Google Scholar] [CrossRef]
- Khayretdinova, G.; Gout, C.; Chaumont-Frelet, T.; Kuksenko, S. Image segmentation with a priori conditions: Applications to medical and geophysical imaging. Math. Comput. Appl. 2022, 27, 26. [Google Scholar] [CrossRef]
- Habigt, M.A.; Gesenhues, J.; Stemmler, M.; Hein, M.; Rossaint, R.; Mechelinck, M. In vivo validation of a cardiovascular simulation model in pigs. Math. Comput. Appl. 2022, 27, 28. [Google Scholar] [CrossRef]
- Hakula, H. Resolving boundary layers with harmonic extension finite elements. Math. Comput. Appl. 2022, 27, 57. [Google Scholar] [CrossRef]
- Mortari, D. Using the theory of functional connections to solve boundary value geodesic problems. Math. Comput. Appl. 2022, 27, 64. [Google Scholar] [CrossRef]
- Dos Santos, L.S.; Alcarás, J.R.; Da Costa, L.M.; Simões, M.M.; Martinez, A.S. Analytical solutions of microplastic particles dispersion using a lotka-volterra predator-prey model with time-varying intraspecies coefficients. Math. Comput. Appl. 2022, 27, 66. [Google Scholar]
- Nguyen, Q.K.; Serra-Capizzano, S.; Tablino-Possio, C.; Wadbro, E. Spectral analysis of the finite element matrices approximating 3d linearly elastic structures and multigrid proposals. Math. Comput. Appl. 2022, 27, 2433. [Google Scholar] [CrossRef]
- Khan, S.A.; Hayat, T. Entropy analysis for hydromagnetic Darcy-Forchheimer flow subject to Soret and Dufour effects. Math. Comput. Appl. 2022, 27, 80. [Google Scholar] [CrossRef]
- Pereira, G.T.; Sousa, R.J.; Liu, I.S.; Teixeira, M.G.; Fernandes, F.A. A new material model for agglomerated cork. Math. Comput. Appl. 2022, 27, 92. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozza, G.; Schütze, O.; Fantuzzi, N. Feature Paper Collection of Mathematical and Computational Applications—2022. Math. Comput. Appl. 2023, 28, 16. https://doi.org/10.3390/mca28010016
Rozza G, Schütze O, Fantuzzi N. Feature Paper Collection of Mathematical and Computational Applications—2022. Mathematical and Computational Applications. 2023; 28(1):16. https://doi.org/10.3390/mca28010016
Chicago/Turabian StyleRozza, Gianluigi, Oliver Schütze, and Nicholas Fantuzzi. 2023. "Feature Paper Collection of Mathematical and Computational Applications—2022" Mathematical and Computational Applications 28, no. 1: 16. https://doi.org/10.3390/mca28010016
APA StyleRozza, G., Schütze, O., & Fantuzzi, N. (2023). Feature Paper Collection of Mathematical and Computational Applications—2022. Mathematical and Computational Applications, 28(1), 16. https://doi.org/10.3390/mca28010016