A Hierarchical Design Framework for the Design of Soft Robots
Abstract
:1. Introduction
2. Background
3. Materials and Methods
4. Design of Asymmetrical Bending Motion Actuator
4.1. Forward Pass
4.2. Backward Pass
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
FE | Finite element |
HS | Hierarchical step |
SPBA | Soft pneumatic bending actuator |
PN | Pneumatic network |
sPN | Slow pneumatic network |
fPN | Fast pneumatic network |
MMFD | Modified method of feasible directions |
HFm | Hierarchical framework method |
Dm | Direct method |
Appendix A. Optimisation Loop Details
Appendix A.1. Non-Linear Solver
Property | Value |
---|---|
Iterative procedure | Full Newton–Raphson |
Relative residual force tolerance | 0.1 |
Appendix A.2. Optimiser
Property | Value |
---|---|
Absolute Convergence Criteria | |
Relative convergence criteria | 0.001 |
Maximum optimisation iterations | 100 |
Gradient calculation | Forward difference |
Relative finite difference step | 0.001 |
Appendix A.3. Function Calls and Evaluation Time
Appendix A.4. Computation Hardware
Processor | Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz 2.40 GHz |
---|---|
Installed RAM | 16.0 GB |
System type | 64-bit operating system, ×64 based processor |
Operating System | Windows |
---|---|
Edition | 10 Pro |
Version | 22H2 |
OS build | 19,045.2311 |
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawk, C.; Alici, G. A Review of 3D-Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. Adv. Intell. Syst. 2021, 3, 2000223. [Google Scholar] [CrossRef]
- Ma, L.K.; Zhang, Y.; Liu, Y.; Zhou, K.; Tong, X. Computational Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Webster III, R.J.; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Trivedi, D.; Lotfi, A.; Rahn, C.D. Geometrically exact models for soft robotic manipulators. IEEE Trans. Robot. 2008, 24, 773–780. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Z.; Zhao, Q. Optimal Design of Soft Pneumatic Bending Actuators Subjected to Design-Dependent Pressure Loads. IEEE/ASME Trans. Mechatronics 2019, 24, 2873–2884. [Google Scholar] [CrossRef]
- Caasenbrood, B.; Pogromsky, A.; Nijmeijer, H. A Computational Design Framework for Pressure-Driven Soft Robots through Nonlinear Topology Optimization. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 633–638. [Google Scholar] [CrossRef]
- Grazioso, S.; Di Gironimo, G.; Siciliano, B. A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robot. 2019, 6, 790–811. [Google Scholar] [CrossRef]
- Runge, G.; Raatz, A. A framework for the automated design and modelling of soft robotic systems. CIRP Ann. 2017, 66, 9–12. [Google Scholar] [CrossRef]
- Pinskier, J.; Howard, D. From Bioinspiration to Computer Generation: Developments in Autonomous Soft Robot Design. Adv. Intell. Syst. 2022, 4, 2100086. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.Z.Q.; Yi, J. Soft robotics for engineers. HKIE Trans. 2015, 22, 88–97. [Google Scholar] [CrossRef]
- Navas, E.; Fernandez, R.; Sepulveda, D.; Armada, M.; Gonzalez-De-santos, P. Soft grippers for automatic crop harvesting: A review. Sensors 2021, 21, 2689. [Google Scholar] [CrossRef]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A Resilient, Untethered Soft Robot. Soft Robot. 2014, 1, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Paul, C. Morphological computation: A basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 2006, 54, 619–630. [Google Scholar] [CrossRef]
- Howard, D.; Eiben, A.E.; Kennedy, D.F.; Mouret, J.B.; Valencia, P.; Winkler, D. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 2019, 1, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Xavier, M.S.; Tawk, C.D.; Zolfagharian, A.; Pinskier, J.; Howard, D.; Young, T.; Lai, J.; Harrison, S.M.; Yong, Y.K.; Bodaghi, M.; et al. Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access 2022, 10, 59442–59485. [Google Scholar] [CrossRef]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. 2011, 50, 1890–1895. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.D.; Onal, C.D.; Rus, D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robot. 2014, 1, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Schiller, L.; Seibel, A.; Schlattmann, J. Toward a Gecko-Inspired, Climbing Soft Robot. Front. Neurorobot. 2019, 13, 106. [Google Scholar] [CrossRef] [Green Version]
- Cheney, N.; MacCurdy, R.; Clune, J.; Lipson, H. Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. SIGEVOlution 2014, 7, 11–23. [Google Scholar] [CrossRef]
- Runge, G.; Wiese, M.; Günther, L.; Raatz, A. A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 22–24 April 2017; pp. 7–14. [Google Scholar] [CrossRef]
- Hiller, J.; Lipson, H. Automatic Design and Manufacture of Soft Robots. IEEE Trans. Robot. 2012, 28, 457–466. [Google Scholar] [CrossRef]
- Lehman, J.; Clune, J.; Misevic, D.; Adami, C.; Altenberg, L.; Beaulieu, J.; Bentley, P.J.; Bernard, S.; Beslon, G.; Bryson, D.M.; et al. The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities. Artif. Life 2020, 26, 274–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, K.; Saitou, K. Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations. J. Mech. Des. 2004, 127, 485–492. [Google Scholar] [CrossRef]
- Conradie, N.T. A Scale-Invariant Generative Design Process for 2D Soft Robot Actuators. Masters Thesis, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Ellis, D.R.; Venter, M.P.; Venter, G. Generative Design Procedure for Embedding Specified Planar Behavior in Modular Soft Pneumatic Actuators. Soft Robot. 2022, 9, 552–561. [Google Scholar] [CrossRef]
- Braden, B. The Surveyor’s Area Formula. Coll. Math. J. 1986, 17, 326–337. [Google Scholar] [CrossRef]
- Joubert, I.J. Generative Design Using Lindenmayer-Systems and Numerical Optimization. Masters Thesis, Stellenbosch University, Stellenbosch, South Africa, 2020. [Google Scholar]
- Hexagon, A.B. Marc 2021.4, Nexus Portal, Marc 2021.4 Volume A: Theory and User Information; Hexagon AB: Irvine, CA, USA, 2023. [Google Scholar]
- Vanderplaats Research & Development, Inc. DOT Design Optimisation Tools Users Manual, Version 7; Vanderplaats Research & Development, Inc.: Colorado Springs, CO, USA, 2017. [Google Scholar]
Level 1 | Level 2 | Level 3 | |
---|---|---|---|
Forward Pass | Desired design | Create reduced model | Chamber design |
Backward Pass | Cascade to full length | Optimise 3 element model | Chamber design |
Property | Value/Specification |
---|---|
Material | Mold star 30 |
Pressure | 0 to 15 kPa |
Internal Chambers | 2 |
Unit dimensions | 80 × 80 × 2 mm |
Number of units | 9 |
Minimum sidewall thickness | 2 mm |
Method | Design Variables | Constraints | Side Constraints | FE Size |
---|---|---|---|---|
Hierarchical Framework | 16 | 2 | 32 | |
Direct method | 144 | 2 | 288 | Full |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligthart, P.F.; Venter, M.P. A Hierarchical Design Framework for the Design of Soft Robots. Math. Comput. Appl. 2023, 28, 47. https://doi.org/10.3390/mca28020047
Ligthart PF, Venter MP. A Hierarchical Design Framework for the Design of Soft Robots. Mathematical and Computational Applications. 2023; 28(2):47. https://doi.org/10.3390/mca28020047
Chicago/Turabian StyleLigthart, Philip Frederik, and Martin Philip Venter. 2023. "A Hierarchical Design Framework for the Design of Soft Robots" Mathematical and Computational Applications 28, no. 2: 47. https://doi.org/10.3390/mca28020047
APA StyleLigthart, P. F., & Venter, M. P. (2023). A Hierarchical Design Framework for the Design of Soft Robots. Mathematical and Computational Applications, 28(2), 47. https://doi.org/10.3390/mca28020047