A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications
Abstract
:1. Introduction
2. Model Description
2.1. Calculation of Plasma Properties
2.2. MHD-CFD Multiphysics Model
3. Results and Discussion
3.1. Material Properties for Syngas Plasmas
3.2. MHD-CFD Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DC | Direct current |
LTE | Local thermodynamic equilibrium |
MHD | Magnetohydrodynamic |
CFD | Computational fluid dynamics |
References
- Kekana, T.P.; Akdogan, G.; Reynolds, Q.G. The Feasibility of Producing Syngas from Waste Coal Fines and Steam Using a DC Arc Gasifier. In Proceedings of the IMPC 2020: XXX International Mineral Processing Congress; The Southern African Institute of Mining and Metallurgy: Cape Town, South Africa, 2021; pp. 2408–2420. [Google Scholar]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Plenum Press: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Bowman, B.; Krüger, K. Arc Furnace Physics; Verlag Stahleisen GmbH: Düsseldorf, Germany, 2009. [Google Scholar]
- Ghorui, S.; Sahasrabudhe, S.N.; Murthy, P.S.S.; Das, A.K.; Venkatramani, N. Experimental Evidence of Chaotic Behavior in Atmospheric Pressure Arc Discharge. IEEE Trans. Plasma Sci. 2000, 28, 253–260. [Google Scholar] [CrossRef]
- Ghorui, S.; Das, A.K. Origin of Fluctuations in Atmospheric Pressure Arc Plasma Devices. Phys. Rev. E 2004, 69, 026408. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, Q.G.; Jones, R.T. High-Speed Photography and Modelling of Direct-Current Plasma Arcs. In Proceedings of the 29th International Congress on High-Speed Imaging and Photonics (ICHSIP29), Morioka, Japan, 20–24 September 2010. [Google Scholar]
- Szekely, J.; McKelliget, J.; Choudhary, M. Heat-Transfer Fluid Flow and Bath Circulation in Electric-Arc Furnaces and DC Plasma Furnaces. Ironmak. Steelmak. 1983, 10, 169–179. [Google Scholar]
- Westermoen, A. Modelling of Dynamic Arc Behaviour in a Plasma Reactor. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2007. [Google Scholar]
- Rehmet, C.; Fabry, F.; Rohani, V.; Cauneau, F.; Fulcheri, L. Unsteady State Analysis of Free-Burning Arcs in a 3-Phase AC Plasma Torch: Comparison between Parallel and Coplanar Electrode Configurations. Plasma Sources Sci. Technol. 2014, 23, 065011. [Google Scholar] [CrossRef]
- Haraldsson, H.; Tesfahunegn, Y.A.; Tangstad, M.; Sævarsdóttir, G.A. Modelling of Electric Arcs for Industrial Applications, a Review. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Lowke, J.J.; Morrow, R.; Haidar, J. A Simplified Unified Theory of Arcs and Their Electrodes. J. Phys. D Appl. Phys. 1997, 30, 2033–2042. [Google Scholar] [CrossRef]
- Sævarsdóttir, G.A.; Pálsson, H.; Jónsson, M.T.; Bakken, J.A. Electrode Erosion Due to High-Current Electric Arcs in Silicon and Ferrosilicon Furnaces. Steel Res. Int. 2006, 77, 385–391. [Google Scholar] [CrossRef]
- Pálsson, H.; Sævarsdóttir, G.A.; Jónsson, M.T.; Bakken, J.A. Thermal Effects on Carbon Based Electrodes Close to a High Current Electric Arc. In Proceedings of the INFACON XI 2007: Innovations in Ferroalloys Industry, New Delhi, India, 18–21 February 2007; IFAPA: New Delhi, India, 2007; pp. 695–702. [Google Scholar]
- Reynolds, Q.G. Computational Modeling of Arc–Slag Interaction in DC Furnaces. JOM 2017, 69, 351–357. [Google Scholar] [CrossRef]
- Reynolds, Q.G.; Sandrock, C. Minplascalc (Commit E0ddd00). 2022. Available online: https://github.com/quinnreynolds/minplascalc (accessed on 14 February 2023).
- Linstrom, P. NIST Chemistry WebBook, NIST Standard Reference Database 69. 1997. Available online: https://webbook.nist.gov/chemistry/ (accessed on 14 February 2023).
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database 78. 1999. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 14 February 2023).
- Devoto, R.S. Transport Properties of Ionized Monatomic Gases. Phys. Fluids 1966, 9, 1230. [Google Scholar] [CrossRef]
- Stallcop, J.R.; Partridge, H.; Levin, E. Resonance Charge Transfer, Transport Cross Sections, and Collision Integrals for N+ (3P)–N(4S0) O+ (4S0)–O(3P) Interact. J. Chem. Phys. 1991, 95, 6429–6439. [Google Scholar] [CrossRef]
- Laricchiuta, A.; Colonna, G.; Bruno, D.; Celiberto, R.; Gorse, C.; Pirani, F.; Capitelli, M. Classical Transport Collision Integrals for a Lennard-Jones like Phenomenological Model Potential. Chem. Phys. Lett. 2007, 445, 133–139. [Google Scholar] [CrossRef]
- Richardson, A.S. NRL Plasma Formulary; United States Naval Research Laboratory: Washington, DC, USA, 2019. [Google Scholar]
- ESI. OpenFOAM V2212. 2022. Available online: https://www.openfoam.com/news/main-news/openfoam-v2212 (accessed on 14 February 2023).
- Reynolds, Q.G. Toward Computational Models of Arc Dynamics in Silicon Smelters. In Proceedings of the 14th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 12–14 October 2020; SINTEF Academic Press: Trondheim, Norway, 2020; pp. 99–106. [Google Scholar]
- Reynolds, Q.G.; Jones, R.T. Semi-Empirical Modelling of the Electrical Behaviour of DC-arc Smelting Furnaces. J. South. Afr. Inst. Min. Metall. 2004, 104, 345–351. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Region diameter | 0.2 m | Region height | 0.2 m |
Electrode diameter | 0.05 m | Arc length | 0.01–0.05 m |
DC current I | 200–1000 A | CO fraction | 0.5–1.0 |
Field | Cathode | Anode | Walls | Atmosphere |
---|---|---|---|---|
/ | ||||
h | / | / | / |
Resolution | Voltage Average | Voltage Std Dev. |
---|---|---|
0.75 mm | 233.2 V | 34.0 V |
1.00 mm | 216.8 V | 28.6 V |
1.25 mm | 211.5 V | 29.1 V |
1.50 mm | 172.6 V | 12.8 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, Q.G.; Kekana, T.P.; Xakalashe, B.S. A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications. Math. Comput. Appl. 2023, 28, 60. https://doi.org/10.3390/mca28020060
Reynolds QG, Kekana TP, Xakalashe BS. A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications. Mathematical and Computational Applications. 2023; 28(2):60. https://doi.org/10.3390/mca28020060
Chicago/Turabian StyleReynolds, Quinn G., Thokozile P. Kekana, and Buhle S. Xakalashe. 2023. "A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications" Mathematical and Computational Applications 28, no. 2: 60. https://doi.org/10.3390/mca28020060
APA StyleReynolds, Q. G., Kekana, T. P., & Xakalashe, B. S. (2023). A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications. Mathematical and Computational Applications, 28(2), 60. https://doi.org/10.3390/mca28020060