Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation
Abstract
:1. Introduction
2. eIFRK+ Fourier-Spectral Schemes for EFK Model
3. Discrete Error Estimate
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 355–369. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Petrovskii, I.G.; Piskunov, N.S. A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Mosc. Univ. Math. Bull. 1937, 1, 1–25. [Google Scholar]
- Coullet, P.; Elphick, C.; Repaux, D. Nature of spatial chaos. Phys. Rev. Lett. 1987, 58, 431. [Google Scholar] [CrossRef]
- Saarloos, W.V. Dynamical velocity selection: Marginal stability. Phys. Rev. Lett. 1987, 58, 2571. [Google Scholar] [CrossRef]
- Danumjaya, P.; Pani, A.K. Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation. J. Comput. Appl. Math. 2005, 174, 101–117. [Google Scholar] [CrossRef]
- Li, S.G.; Xu, D.; Zhang, J.; Sun, C.J. A new three-level fourth-order compact finite difference scheme for the extended Fisher–Kolmogorov equation. Appl. Numer. Math. 2022, 178, 41–51. [Google Scholar] [CrossRef]
- Ilati, M.; Dehghan, M. Direct local boundary integral equation method for numerical solution of extended Fisher–Kolmogorov equation. Eng. Comput. 2018, 34, 203–213. [Google Scholar] [CrossRef]
- Sun, Q.H.; Ji, B.Q.; Zhang, L. A convex splitting BDF2 method with variable time-steps for the extended Fisher–Kolmogorov equation. Comput. Math. Appl. 2022, 114, 73–82. [Google Scholar] [CrossRef]
- Sun, Q.H.; Wang, J.D.; Zhang, L.M. A new third-order energy stable technique and error estimate for the extended Fisher–Kolmogorov equation. Comput. Math. Appl. 2023, 142, 198–207. [Google Scholar] [CrossRef]
- Isherwood, L.; Grant, Z.J.; Gottlieb, S. Strong stability preserving integrating factor Runge–Kutta methods. SIAM J. Numer. Anal. 2018, 58, 3276–3307. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Weng, Z.F.; Yang, Y.F. A high order operator splitting method based on spectral deferred correction for the nonlocal viscous Cahn–Hilliard equation. J. Comput. Phys. 2021, 446, 110632. [Google Scholar] [CrossRef]
- Zhai, S.Y.; Weng, Z.F.; Feng, X.L.; He, Y.N. Stability and error estimate of the operator splitting method for the phase field crystal equation. J. Sci. Comput. 2021, 86, 8. [Google Scholar] [CrossRef]
- Ju, L.L.; Li, X.; Qiao, Z.H.; Yang, J. Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations. J. Comput. Phys. 2021, 439, 110405. [Google Scholar] [CrossRef]
- Li, J.W.; Li, X.; Ju, L.L.; Feng, X.L. Stabilized integrating factor Runge–Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 2021, 43, A1780–A1802. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.Y.; Qian, X.; Chen, X.W.; Song, S.H. Explicit third-order unconditionally structure-preserving schemes for conservative Allen–Cahn equations. J. Sci. Comput. 2022, 90, 1–29. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.Y.; Qian, X.; Song, S.H. Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge–Kutta schemes for Allen–Cahn equation. Appl. Numer. Math. 2021, 161, 372–390. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.Y.; Qian, X.; Song, S.H. Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations. Comput. Methods Appl. Mech. Eng. 2022, 393, 114817. [Google Scholar] [CrossRef]
- Shu, C.W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Shen, J.; Tang, T.; Wang, L.L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science: London, UK; New York, NY, USA, 2011; Volume 41, pp. 1–45. [Google Scholar]
- Nan, C.X.; Song, H.L. The high-order maximum-principle-preserving integrating factor Runge–Kutta methods for nonlocal Allen–Cahn equation. J. Comput. Phys. 2022, 456, 111028. [Google Scholar] [CrossRef]
eIFRK+ | M | Errmax | Rate | Err | Rate |
---|---|---|---|---|---|
16 | - | 1.9491 | - | ||
32 | 0.9728 | 9.8542 | 0.9840 | ||
64 | 0.9862 | 4.9540 | 0.9921 | ||
128 | 0.9931 | 0.9961 | |||
16 | - | - | |||
32 | 1.9630 | 1.9622 | |||
64 | 1.9816 | 1.9812 | |||
128 | 1.9908 | 1.9906 | |||
16 | - | - | |||
32 | 2.9631 | 2.9583 | |||
64 | 2.9815 | 2.9791 | |||
128 | 2.9907 | 2.9896 | |||
16 | - | - | |||
32 | 3.9824 | 3.9830 | |||
64 | 3.9901 | 3.9915 | |||
128 | 3.9939 | 3.9958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhai, S. Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation. Math. Comput. Appl. 2023, 28, 110. https://doi.org/10.3390/mca28060110
Wang Y, Zhai S. Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation. Mathematical and Computational Applications. 2023; 28(6):110. https://doi.org/10.3390/mca28060110
Chicago/Turabian StyleWang, Yanan, and Shuying Zhai. 2023. "Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation" Mathematical and Computational Applications 28, no. 6: 110. https://doi.org/10.3390/mca28060110
APA StyleWang, Y., & Zhai, S. (2023). Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation. Mathematical and Computational Applications, 28(6), 110. https://doi.org/10.3390/mca28060110