Structural Stability of Pseudo-Parabolic Equations for Basic Data
Abstract
:1. Introduction
2. Spatial Decay Bound
3. Important Lemmas
4. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.J.; Gurtin, M.E. On a theory of heat involving two temperatures. J. Appl. Math. Phys. (ZAMP) 1968, 19, 614–627. [Google Scholar] [CrossRef]
- Horgan, C.O.; Quintanilla, R. Spatial decay of transient end effects for nonstandard linear diffusion problems. IMA J. Appl. Math. 2005, 70, 119–128. [Google Scholar] [CrossRef]
- Li, Y.N.; Yang, Y.T. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation. AIMS Math. 2023, 8, 17827–17859. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.R. Blow-up time of solutions to a class of pseudo-parabolic equations. Comptes Rendus Mécanique 2023, 351, 219–226. [Google Scholar] [CrossRef]
- Li, Y.F.; Xiao, S.Z.; Chen, X.J. Spatial alternative and stability of type III thermoelastic equations. Appl. Math. Mech. 2021, 42, 431–440. [Google Scholar]
- Zeng, P.; Li, D.D.; Li, Y.F. The growth or decay estimates for nonlinear wave equations with damping and source terms. Math. Biosci. Eng. 2023, 20, 13989–14004. [Google Scholar] [CrossRef] [PubMed]
- Flavin, J.N.; Knops, R.J.; Payne, L.E. Decay estimates for the constrained elastic cylinder of variable cross-section. Q. Appl. Math. 1989, 47, 325–350. [Google Scholar] [CrossRef]
- Quintanilla, R.; Racke, R. Spatial behavior in phase-lag heat conduction. Differ. Integral Equ. 2015, 28, 291–308. [Google Scholar] [CrossRef]
- Leseduarte, M.C.; Quintanilla, R. Spatial behavior in high order partial differential equations. Math. Methods Appl. Anal. 2018, 41, 2480–2493. [Google Scholar] [CrossRef]
- Chen, W. Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D. Asymptot. Anal. 2020, 117, 113–140. [Google Scholar] [CrossRef]
- Baranovskii, E.S. The Navier-Stokes-Voigt equations with position-dependent slip boundary conditions. Z. Angew. Math. Phys. 2023, 74, 6. [Google Scholar] [CrossRef]
- Knops, R.J.; Payne, L.E. Continuous dependence on base data in an elastic prismatic cylinder. J. Elast. 2001, 64, 179–190. [Google Scholar] [CrossRef]
- Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on boundary and Soret coefficients in double diffusive bidispersive convection. Math. Methods Appl. Sci. 2020, 43, 8882–8893. [Google Scholar] [CrossRef]
- Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubitity. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar]
- Liu, Y.; Xiao, S.Z.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, W.B.; Li, Y.F. Structural stability for Forchheimer fluid in a semi-infinite pipe. Electron. Res. Arch. 2023, 31, 1466–1484. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, X.J. Structural stability for temperature-dependent bidispersive flow in a semi-infinite pipe. Lith. Math. J. 2023, 63, 337–366. [Google Scholar] [CrossRef]
- Li, Y.F. A study on continuous dependence of layered composite materials in binary mixtures on basic data. Electron. Res. Arch. 2024, 32, 5577–5591. [Google Scholar] [CrossRef]
- Payne, L.E.; Song, J.C. Spatial decay bounds for the Forchheimer equations. Int. J. Eng. Sci. 2002, 40, 943–956. [Google Scholar] [CrossRef]
- Horgan, C.O.; Wheeler, L.T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J. Appl. Math. 1978, 35, 97–116. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y. Structural Stability of Pseudo-Parabolic Equations for Basic Data. Math. Comput. Appl. 2024, 29, 105. https://doi.org/10.3390/mca29060105
Wang Y, Li Y. Structural Stability of Pseudo-Parabolic Equations for Basic Data. Mathematical and Computational Applications. 2024; 29(6):105. https://doi.org/10.3390/mca29060105
Chicago/Turabian StyleWang, Yanping, and Yuanfei Li. 2024. "Structural Stability of Pseudo-Parabolic Equations for Basic Data" Mathematical and Computational Applications 29, no. 6: 105. https://doi.org/10.3390/mca29060105
APA StyleWang, Y., & Li, Y. (2024). Structural Stability of Pseudo-Parabolic Equations for Basic Data. Mathematical and Computational Applications, 29(6), 105. https://doi.org/10.3390/mca29060105