New Metaheuristics to Solve the Internet Shopping Optimization Problem with Sensitive Prices
Abstract
:1. Introduction
- A novel method for calculating changes in the objective values of the current solution during local search, with a time complexity of .
- Adaptive adjustment of control parameters.
- A neighborhood diversification technique and a local search at the end of each iteration.
- Adaptive adjustment of control parameters.
2. Definition of the Problem
3. The General Structure of the Proposed Algorithms
3.1. Representation of a Candidate Solution
3.2. Adaptive Parameter Adjustment
3.2.1. Assignment of Credits
- represents the fitness value of the parent.
- represents the fitness value of the children.
Algorithm 1. Credit allocation. |
1: Initialize each reward 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: |
3.2.2. Bandit-Based Action Selection
Algorithm 2. Bandit-based action selection. |
1: 2: 3: 4: 5: |
3.3. Actions Pool for the Memetic Algorithm
- (1)
- Action 1
- (2)
- Action 2
- (3)
- Action 3
- (4)
- Action 4
- (5)
- Action 5
- (6)
- Action 6
3.4. Actions Pool for the Particle Swarm Optimization Algorithm
- (1)
- Action 1
- (2)
- Action 2
- (3)
- Action 3
- (4)
- Action 4
- (5)
- Action 5
- (6)
- Action 6
4. The General Structure of the Memetic Algorithm
4.1. Used Heuristics
4.1.1. Heuristic: Best First
4.1.2. Heuristic: The Best
4.2. Binary Tournament
4.3. Crossover Mechanism
4.4. Mutation Operator
4.5. Improved Local Search
4.6. Proposed Memetic Algorithm
Algorithm 3. MAIShOPwD Algorithm. |
Input: : Maximum number of iterations Instance: m (stores), n (products), cij (product cost), dj (shipping cost) Parameters/Variables: initial population size : crossover probability : mutation probability : rate elitism : Initial population BestGlobalSolution, BestGlobalCost: Best overall solution and cost BestLocalSolution, BestLocalCost: Best solution and cost in each generation Functions: BestGlobal(pop, BestGlobalSolution, BestGlobalCost): from pop obtain the BestGlobalSolution and the BestGlobalCost , apply the mutation operator to all the solutions in the intermediate population and move the offspring to the population of children : apply improved LocalSearch to all solutions in IntermediatePop and move the offspring to ChildPop : obtain the BestLocalSolution and the BestLocalCost in ChildPop : calculate the objective value : apply the discount to the objective value : obtains the index for executing an action : performs an action based on an index : a sliding window that stores both the frecuency of action execution and the decrease in individual costs : enhance the rewards held within the sliding window Output: : Best overall solution Best overall cost |
2: Load Instance |
6: BestGlobal(pop, BestGlobalSolution, BestGlobalCost) |
7: BestLocalSolution = BestGlobalSolution; BestLocalCost = BestGlobalCost; |
do |
10: Move from NewPop to IntermediatePop the elite solutions |
then {BestGlobalCost = BestLocalCost; BestGloblalSolution = BestLocalSolution} |
{BestGlobalSolution} |
17: Randomly generate ps − 1 solutions and add each solution to pop |
20: Rank Rewards |
21: end while |
) |
5. Overview of the Particle Swarm Optimization Algorithm Structure
5.1. Neighborhood Diversification Technique
Algorithm 4. Neighborhood diversification technique. |
Inputs: Population of solutions Outputs: Updated Population. Variables: : Population : Population size : Number of products : Number of stores Functions: Generates a random number in the range [1, ]. Calculate objective value of the particle. Calculates the maximum value between the position of a particle and 1. Calculates the minimum value between the position of a particle and . : Apply the discount to the objective value 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: |
5.2. Local Search
Algorithm 5. Local Search. |
Inputs: Best Global solution Outputs: Best Global Solution Updated. Variables: : Number of products : Number of stores : Objective value cost Functions: Calculate objective value of the Global Best : apply the discount to the objective value 1. 2. 3. 4. 5. 6. ) 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. |
5.3. Proposed Particle Swarm Optimization Algorithm (PSOIShOPwD)
Algorithm 6. PSOIShOPwD Algorithm. |
Inputs: Population. Outputs: Global Best Solution. Variables/Parameters: : Population : Population size : Number of products : Number of stores : Maximum number of iterations : Inertial weight : Inertial weight damping radius : Personal learning quotient : Global learning quotient : Global Best Solution Functions: Generates a Random number in the range [1, . Calculate the objective value of a particle Calculates the maximum value between the position of a particle and 1. Calculates the minimum value between the position of a particle and . Applies the neighborhood diversification technique to all particles. Apply local search to the best global solution. : Gets an index of an action to perform. : Execute an action according to an index. : Sliding window that stores the index of action to be performed and the improvement in the cost of the particle. : Update the sliding window rewards. Apply the assigned discount to the total cost of the purchase. 1: Initialize parameters . 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: ) 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: Add to 29: 30: Rank Rewards 31: 32: 33: 34: 35: 36: |
6. Computational Experiments
7. Results
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez Valdez, R.I.; Catache Mendoza, M.d.C.; Pedroza Cantú, G.; Huerta Cerda, Z.M. El Impacto del COVID-19 en la incidencia de compras en Línea de los Millenials. Rev. Ing. Gestión Ind. 2022, 1, 17–27. [Google Scholar] [CrossRef]
- Błażewicz, J.; Kovalyov, M.Y.; Musiał, J.; Urbański, A.P.; Wojciechowski, A. Internet shopping optimization problem. Int. J. Appl. Math. Comput. Sci. 2010, 20, 385–390. [Google Scholar]
- Hussain, K.; Mohd Salleh, M.N.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2191–2233. [Google Scholar] [CrossRef]
- Li, G.; Zhang, T.; Tsai, C.Y.; Yao, L.; Lu, Y.; Tang, J. Review of the metaheuristic algorithms in applications: Visual analysis based on bibliometrics (1994–2023). Expert Syst. Appl. 2024, 255, 124857. [Google Scholar] [CrossRef]
- Valencia-Rivera, G.H.; Benavides-Robles, M.T.; Morales, A.V.; Amaya, I.; Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Avina-Cervantes, J.G. A systematic review of metaheuristic algorithms in electric power systems optimization. Appl. Soft Comput. 2024, 150, 111047. [Google Scholar] [CrossRef]
- Błażewicz, J.; Bouvry, P.; Kovalyov, M.Y.; Musial, J. Erratum to: Internet shopping with price-sensitive discounts. 4OR 2014, 12, 403–406. [Google Scholar] [CrossRef]
- Musial, J.; Pecero, J.E.; Lopez, M.C.; Fraire, H.J.; Bouvry, P.; Błażewicz, J. How to efficiently solve Internet Shopping Optimization Problem with price sensitive discounts? In Proceedings of the 2014 11th International Conference on e-Business (ICE-B) IEEE, Vienna, Austria, 28–30 August 2014; pp. 209–215. [Google Scholar]
- Błażewicz, J.; Cheriere, N.; Dutot, P.F.; Musial, J.; Trystram, D. Novel dual discounting functions for the Internet shopping optimization problem: New algorithms. J. Sched. 2016, 19, 245–255. [Google Scholar] [CrossRef]
- Chung, J.; Choi, B. Complexity and algorithms for optimal bundle search problem with pairwise discount. J. Distrib. Sci. 2017, 15, 35–41. [Google Scholar] [CrossRef]
- Mahrudinda, M.; Chaerani, D.; Rusyaman, E. Systematic literature review on adjustable robust counterpart for internet shopping optimization problem. Int. J. Data Netw. Sci. 2022, 6, 581–594. [Google Scholar] [CrossRef]
- Morales, M.Á.G.; Huacuja, H.J.F.; Solís, J.F.; Reyes, L.C.; Santillán, C.G.G. A Survey of Models and Solution Methods for the Internet Shopping Optimization Proble. In Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design; Studies in Computational Intelligence; Castillo, O., Melin, P., Eds.; Springer: Cham, Switzerland, 2023; Volume 1061. [Google Scholar] [CrossRef]
- Huacuja, H.J.F.; Morales, M.Á.G.; Locés, M.C.L.; Santillán, C.G.G.; Reyes, L.C.; Rodríguez, M.L.M. Optimization of the Internet Shopping Problem with Shipping Costs. In Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications; Springer: Cham, Switzerland, 2021; pp. 249–255. [Google Scholar]
- García-Morales, M.Á.; Fraire-Huacuja, H.J.; Brambila-Hernández, J.A.; Frausto-Solís, J.; Cruz-Reyes, L.; Gómez-Santillán, C.G.; Carpio-Valadez, J.M. Particle Swarm Optimization Algorithm with Improved Opposition-Based Learning (IOBL-PSO) to Solve Continuous Problems. In Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics; Springer: Cham, Switzerland, 2023; pp. 115–126. [Google Scholar]
- Li, K.; Fialho, A.; Kwong, S.; Zhang, Q. Adaptive Operator Selection with Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2014, 18, 114–130. [Google Scholar] [CrossRef]
- Fialho, A.; da Costa, L.; Schoenauer MSebag, M. Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 2010, 60, 25–64. [Google Scholar] [CrossRef]
- Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 2002, 47, 235–256. [Google Scholar] [CrossRef]
- García-Morales, M.A.; Brambila-Hernández, J.A.; Fraire-Huacuja, H.J.; Frausto-Solis, J.; Cruz-Reyes, L.; Gómez-Santillan, C.G.; Carpio-Valadez, J.M. Multi-objective Evolutionary Algorithm Based on Decomposition with Adaptive Adjustment of Control Parameters to Solve the Bi-objective Internet Shopping Optimization Problem (MOEA/D-AACPBIShOP). Comput. Sist. 2024, 28, 727–738. [Google Scholar] [CrossRef]
- García-Morales, M.; Brambila, A.; Fraire-Huacuja, H.; Cruz-Reyes, L.; Frausto-Solís, J.; Gómez-Santillán, C.; Rangel-Valdez, N. A Novel Particle Swarm Optimization Algorithm to Solve the Internet Shopping Optimization Problem with Shipping Costs. Int. J. Comb. Optim. Probl. Inform. 2024, 15, 101–114. [Google Scholar] [CrossRef]
Small Instances | Medium Instances | Large Instances |
---|---|---|
Variables/Parameters | MAIShOPwD | PSOIShOPwD |
---|---|---|
100 | 100 | |
0.6 * | 0.6 | |
0.01 * | 0.01 | |
0.05 | ||
0.99 | ||
100 | 100 | |
1 | ||
1.5, 2 * |
Instances | BB | MAIShOPwD | BB | MAIShOPwD | p-Value (OV) | p-Value (Time) |
---|---|---|---|---|---|---|
56.560.04 | 56.560 | 0.0846.2×10−5 | 1.2222 × 10−50.05 | 0.625 | 0.00001 | |
70.680.21 | 70.680 | 0.0484.3×10−5 | 6.6667 × 10−60.007 | 0.625 | 0.00001 | |
89.160.62 | 89.040.004 | 0.0400.0002 | 0.00020.029 | 0.625 | 0.00001 | |
75.701.94 | 67.681.67 | 0.0671.76 | 0.2740.1 | 0.00001 | 0.00001 | |
70.562.44 | 62.661.68 | 0.2430.288 | 0.7900.2 | 0.00001 | 0.00001 | |
503.4912.83 | 434.2917.60 | 22.507.50 | 16.4448.03 | 0.00001 | 0.00001 | |
433.619.78 | 389.1424.08 | 33.1140.10 | 48.66125.30 | 0.00148 | 0.00001 | |
992.7215.32 | 757.2938.25 | 50.4939.76 | 73.85725.64 | 0.00001 | 0.00001 | |
796.8714.15 | 655.7235.04 | 176.1192.54 | 181.95295.30 | 0.00001 | 0.3843 | |
Total average | 343.261 | 287.007 | 31.41 | 35.775 |
Instances | BB | PSOIShOPwD | BB | PSOIShOPwD | p-Value (OV) | p-Value (Time) |
---|---|---|---|---|---|---|
56.640 | 0.0846.2×10−5 | 0.010406.1×10−5 | 0.625 | 0.00001 | ||
70.680.21 | 70.760 | 0.0484.3×10−5 | 0.01030 | 0.625 | 0.00001 | |
89.160.62 | 89.213.3726×10−14 | 0.0400.0002 | 0.0086.6944×10−5 | 0.625 | 0.00001 | |
75.701.94 | 68.212.674×10−14 | 0.0671.76 | 0.01045.85×10−18 | 0.00001 | 0.00001 | |
70.562.44 | 64.192.529×10−14 | 0.2430.288 | 0.01105.403×10−18 | 0.00001 | 0.00001 | |
503.4912.83 | 463.5212.83 | 22.507.50 | 24.554110.18 | 0.00001 | 0.24604 | |
433.619.78 | 355.971.3876×10−13 | 33.1140.10 | 0.08942.21×10−7 | 0.00001 | 0.00001 | |
992.7215.32 | 712.792.3897×10−13 | 50.4939.76 | 0.0923.1759×10−17 | 0.00001 | 0.00001 | |
796.8714.15 | 605.632.0428×10−13 | 176.1192.54 | 0.123964.1404×10−17 | 0.00001 | 0.00001 | |
Total average | 343.26 | 276.32 | 31.41 | 2.768 |
Instances | MAIShOPwD | PSOIShOPwD | MAIShOPwD | PSOIShOPwD | p-Value (OV) | p-Value (Time) |
---|---|---|---|---|---|---|
56.560 | 56.640 | 1.2222 × 10−50.05 | 0.01046.1×10−5 | 0.625 | 0.00001 | |
70.680 | 70.760 | 6.6667 × 10−60.007 | 0.01030 | 0.625 | 0.00001 | |
89.213.3726×10−14 | 0.00020.029 | 0.0086.6944×10−5 | 0.625 | 0.00001 | ||
68.212.674×10−14 | 0.2740.1 | 0.01045.85×10−18 | 0.00001 | 0.00001 | ||
64.192.529×10−14 | 0.7900.2 | 0.01105.403×10−18 | 0.00001 | 0.00001 | ||
463.5212.83 | 16.4448.03 | 24.554110.18 | 0.00001 | 0.00016 | ||
389.1424.08 | 355.971.3876×10−13 | 48.66125.30 | 0.08942.21×10−7 | 0.00001 | 0.00001 | |
757.2938.25 | 712.792.3897×10−13 | 73.85725.64 | 0.0923.1759×10−17 | 0.00001 | 0.00001 | |
655.7235.04 | 605.632.0428×10−13 | 181.95295.30 | 0.123964.1404×10−17 | 0.00001 | 0.00001 | |
Total average | 287.007 | 276.32 | 37.775 | 2.7678 |
Instances | BB | MAIShOPwD | PSOIShOPwD | p-Value (OV) | p-Value (Time) | |||
---|---|---|---|---|---|---|---|---|
56.560.04 | 0.0846.2×10−5 | 56.560 | 1.2222 × 10−50.05 | 56.640 | 0.01046.1×10−5 | 0.97531 | 0.00001 | |
70.680.21 | 0.0484.3×10−5 | 70.680 | 6.6667 × 10−60.007 | 70.760 | 0.01030 | 0.97531 | 0.00001 | |
89.160.62 | 0.0400.0002 | 89.040.004 | 0.00020.029 | 89.213.3726×10−14 | 0.0086.6944×10−5 | 0.97531 | 0.00001 | |
75.701.94 | 0.0671.76 | 67.681.67 | 0.2740.1 | 68.212.674×10−14 | 0.01045.85×10−18 | 0.00001 | 0.00001 | |
70.562.44 | 0.2430.288 | 62.661.68 | 0.7900.2 | 64.192.529×10−14 | 0.01105.403×10−18 | 0.00001 | 0.00001 | |
503.4912.83 | 22.507.50 | 434.2917.60 | 16.4448.03 | 463.5212.83 | 24.554110.18 | 0.00001 | 0.00001 | |
433.619.78 | 33.1140.10 | 389.1424.08 | 48.66125.30 | 355.971.3876×10−13 | 0.08942.21×10−7 | 0.00001 | 0.00001 | |
992.7215.32 | 50.4939.76 | 757.2938.25 | 73.85725.64 | 712.792.3897×10−13 | 0.0923.1759×10−17 | 0.00001 | 0.00001 | |
796.8714.15 | 176.1192.54 | 655.7235.04 | 181.95295.30 | 605.632.0428×10−13 | 0.123964.1404×10−17 | 0.00001 | 0.00001 | |
Total average | 343.261 | 31.41 | 287.007 | 35.775 | 276.32 | 2.768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Morales, M.A.; Brambila-Hernández, J.A.; Fraire-Huacuja, H.J.; Frausto, J.; Cruz, L.; Gómez, C.; Peña-Ramos, A. New Metaheuristics to Solve the Internet Shopping Optimization Problem with Sensitive Prices. Math. Comput. Appl. 2024, 29, 119. https://doi.org/10.3390/mca29060119
García-Morales MA, Brambila-Hernández JA, Fraire-Huacuja HJ, Frausto J, Cruz L, Gómez C, Peña-Ramos A. New Metaheuristics to Solve the Internet Shopping Optimization Problem with Sensitive Prices. Mathematical and Computational Applications. 2024; 29(6):119. https://doi.org/10.3390/mca29060119
Chicago/Turabian StyleGarcía-Morales, Miguel A., José Alfredo Brambila-Hernández, Héctor J. Fraire-Huacuja, Juan Frausto, Laura Cruz, Claudia Gómez, and Alfredo Peña-Ramos. 2024. "New Metaheuristics to Solve the Internet Shopping Optimization Problem with Sensitive Prices" Mathematical and Computational Applications 29, no. 6: 119. https://doi.org/10.3390/mca29060119
APA StyleGarcía-Morales, M. A., Brambila-Hernández, J. A., Fraire-Huacuja, H. J., Frausto, J., Cruz, L., Gómez, C., & Peña-Ramos, A. (2024). New Metaheuristics to Solve the Internet Shopping Optimization Problem with Sensitive Prices. Mathematical and Computational Applications, 29(6), 119. https://doi.org/10.3390/mca29060119