Floodplain Forest Foundation Species Salix alba L. Is Resilient to Seawater Pulses during Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Seawater Treatment
2.3. Morphological Parameters and Biomass
2.4. Data Analyses
3. Results
3.1. Electrical Conductivity
3.2. Morphological Parameters
3.2.1. Growth Parameters in April
3.2.2. Growth Parameters in May
3.3. Aboveground and Belowground Dry Mass
4. Discussion
4.1. Growth of the Juvenile S. alba Trees
4.2. Aboveground and Belowground Dry Mass of the Juvenile Salix alba Trees
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- UNEP. Convention on Biological Diversity; 1760 UNTS 79; 31 ILM818 (1992); UNEP: Nairobi, Kenya, 1993. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Karrenberg, S.; Edwards, P.J.; Kollmann, J. The life history of Salicaceae living in the active zone of floodplains. Freshw. Biol. 2002, 47, 733–748. [Google Scholar] [CrossRef]
- Dickmann, D.I.; Kuzovkina, Y.A. Poplars and Willows of the World. With Emphasis on Silvicultural Important Species. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; CAB International and FAO Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2014; pp. 8–91. [Google Scholar]
- van Wesenbeeck, B.K.; Mulder, J.P.M.; Marchand, M.; Reed, D.J.; de Vries, M.B.; de Vriend, H.J.; Herman, P.M.J. Damming deltas: A practice of the past? Towards nature-based flood defenses. Estuar. Coast. Shelf Sci. 2014, 140, 1–6. [Google Scholar] [CrossRef]
- Markus-Michalczyk, H.; de Smit, J.; Zhu, Z.; Mchedlishvili, A.; van Bree, J.; Bouma, T.J. Seasonality and spacing determine the effect of juvenile floodplain willows (Salix alba and Salix viminalis) on water current velocities. Estuar. Coast. Shelf Sci. 2020, 238, 106697. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- UNEP-WCMC. European Forests and Protected Areas: Gap Analysis; United Nations Environmental Program-World Conservation Monitoring Centre: Cambridge, UK, 2000. [Google Scholar]
- Habitats Directive. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. consolidated version 01/01/2007 (EU Habitats Directive). Off. J. Eur. Union 1992, 206, 50. [Google Scholar]
- Ellison, A.M. Foundation Species, Non-trophic Interactions, and the Value of Being Common. iScience 2019, 13, 254–268. [Google Scholar] [CrossRef]
- Isebrands, J.G.; Richardson, J. Introduction. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; CAB International and Food and FAO Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014; pp. 1–7. [Google Scholar]
- Menendez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The global flood protection benefits of mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef]
- Costanza, R.; Anderson, S.J.; Sutton, P.; Mulder, K.; Mulder, O.; Kubiszewski, I.; Wang, X.; Liu, X.; Pérez-Maqueo, O.; Martinez, M.L.; et al. The global value of coastal wetlands for storm protection. Glob. Environ. Chang. 2021, 70, 102328. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Petersen, C.H.; Jackson, J.B. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 2006, 312, 1806–1809. [Google Scholar] [CrossRef]
- Struyf, E.; Jacobs, S.; Meire, P.; Jensen, K.; Barendregt, A.; Studies, P.C.; Hall, J.V. Plant Communities of European Tidal Freshwater Wetlands. In Tidal Freshwater Wetlands; Barendregt, A., Whigham, D.F., Baldwin, A.H., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2009; pp. 59–70. [Google Scholar]
- Markus-Michalczyk, H.; Zhu, Z.; Bouma, T.J. Morphological and biomechanical responses of floodplain willows to tidal flooding and salinity. Freshw. Biol. 2019, 64, 913–925. [Google Scholar] [CrossRef]
- Markus-Michalczyk, H.; Michalczyk, M. Floodplain Forest Restoration as a Nature-Based Solution to Create Climate-Resilient Communities in European Lowland Estuaries. Water 2023, 15, 440. [Google Scholar] [CrossRef]
- van Wesenbeeck, B.K.; Wolters, G.; Antolínez, J.A.A.; Kalloe, S.A.; Hofland, B.; de Boer, W.P.; Çete, C.; Bouma, T.J. Wave attenuation through forests under extreme conditions. Sci. Rep. 2022, 12, 1884. [Google Scholar] [CrossRef]
- Ministry of Infrastructure and the Environment and the Ministry of Economic Affairs. Delta Programme 2015; Working on the Delta. The Decisions to Keep the Netherlands Safe and Liveable; Ministry of Infrastructure and the Environment and the Ministry of Economic Affairs: The Hague, The Netherlands, 2014. [Google Scholar]
- Integrated Management Plan for the Elbe Estuary, 2012. Available online: http://www.natura2000-unterelbe.de/linksGesamtplan.php (accessed on 16 May 2024).
- Mc Lusky, D.S.; Elliott, M. The Estuarine Ecosystem, 3rd ed.; Oxford University Press: Oxford, UK, 2002; 214p. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; Wiley: Hoboken, NJ, USA, 2000; 920p. [Google Scholar]
- Nascimento, W.R., Jr.; Souza-Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensory satellite imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Ran, X.; Huang, X.; Wang, X.; Liang, H.; Wang, Y.; Li, J.; Huo, Z.; Liu, B.; Ma, C. Ion absorption, distribution and salt tolerance threshold of three willow species under salt stress. Front. Plant Sci. 2022, 13, 969896. [Google Scholar] [CrossRef]
- Hangs, R.D.; Schoenau, J.J.; Van Rees, K.C.J.; Steppuhn, H. Examining the salt tolerance of willow (Salix sp.) bioenergy species for use on salt-affected agricultural lands. Can. J. Plant. Sci. 2011, 91, 509–517. [Google Scholar] [CrossRef]
- Ran, X.; Wang, X.; Gao, X.; Liang, H.; Liu, B.; Huang, X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.). PLoS ONE 2021, 16, e0260086. [Google Scholar] [CrossRef]
- Quiñones Martorello, A.S.; Gyenge, J.E.; Fernández, M.E. Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana × S. alba and Eucalyptus camaldulensis Dehnh. Plant Soil 2017, 416, 343–360. [Google Scholar] [CrossRef]
- Huang, X.; Soolanayakanahally, R.Y.; Guy, R.D.; Shunmugam, A.S.; Mansfield, S.D. Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress. Tree Physiol. 2020, 40, 652–666. [Google Scholar] [CrossRef]
- Saini, N.; Banyal, R.; Mann, A.; Bhardwaj, A.K.; Dhillon, R.S.; Kumar, J.; Saini, V.; Yadav, R.K. Examining the Effect of Salinity on Tree Willow Clones for their Adaptation in Saline Ecologies. J. Soil Salin. Water Qual. 2022, 14, 146–160. [Google Scholar]
- Markus-Michalczyk, H.; Hanelt, D.; Ludewig, K.; Müller, D.; Schröter, B.; Jensen, K. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions. Estuar. Coast. Shelf Sci. 2014, 136, 35–42. [Google Scholar] [CrossRef]
- Federal Maritime and Hydrographic Agency 2022. Reports on North Sea Storm Surges. Available online: https://www.bsh.de/DE/THEMEN/Wasserstand_und_Gezeiten/Sturmfluten/sturmfluten_node.html (accessed on 1 December 2023).
- Quiñones Martorello, A.S.; Fernández, M.E.; Monterubbianesi, M.G.; Colabelli, M.N.; Laclau, P.; Gyenge, J.E. Effect of combined stress (salinity + hypoxia) and auxin rooting hormone addition on morphology and growth traits in six Salix spp. clones. New For. 2020, 51, 61–80. [Google Scholar] [CrossRef]
- Liu, M.; Qiao, G.; Jiang, J.; Han, X.; Sang, J.; Zhuo, R. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana. Mol. Biol. Rep. 2014, 41, 6555–6568. [Google Scholar] [CrossRef]
Storm Surge Season | Date | Number of Storm Surges per Season | Total Number of Days with Storm Surges per Season |
---|---|---|---|
2009/2010 | 4. Oct. | 1 | 1 |
2010/2011 | 4.–5. Feb. | 1 | 2 |
2011/2012 | 5.–6. Jan. | 1 | 2 |
2012/2013 | 31. Jan. | 1 | 1 |
2013/2014 | 28. Oct.; 5.–6. Dec. | 2 | 3 |
2014/2015 | 22. Oct.; 9.–11. Jan. | 2 | 4 |
2015/2016 | - | - | - |
2016/2017 | 26.–27. Dec.; 3.–4. and 11.–14. Jan. | 3 | 8 |
2017/2018 | 13. Sept.; 29. Oct. | 2 | 2 |
2018/2019 | 8. Jan. | 1 | 1 |
2019/2020 | 15. Dec.; 15. Jan.; 10.–12. Feb. | 3 | 5 |
2020/2021 | - | - | - |
2021/2022 | 21. Oct.; 7. Nov.; 1. Dec.; 5. and 29.–30. Jan.; 1.–7. and 17.–22. Feb. | 7 | 18 |
Measurement in April | Measurement in May | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Origin | Elbe Estuary | Eastern Scheldt | Elbe Estuary | Eastern Scheldt | ||||||||
Flooding Level | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Shoot (no) | 5.0 ± 2.0 | 3.6 ± 1.1 | 3.8 ± 2.6 | 2.9 ± 1.2 | 3 ± 2.5 | 1.4 ± 1.1 | 5.5 ± 1.9 | 3.8 ± 1.3 | 4.6 ± 2.3 | 3.5 ± 1.3 | 4.2 ± 2.4 | 1.9 ± 1.4 |
Max shoot length (cm) | 3.0 ± 1.2 | 5.2 ± 1.6 | 2.2 ± 1.3 | 3.1 ± 1.2 | 1.8 ± 1.3 | 2.6 ± 2.1 | 10.5 ± 3.4 | 14.3 ± 5 | 7.6 ± 3.6 | 6.7 ± 3 | 6.8 ± 3.6 | 5.4 ± 3.9 |
Shoot length average (cm) | 2.2 ± 0.8 | 3.7 ± 1.3 | 1.6 ± 0.8 | 2.3 ± 0.9 | 1.3 ± 0.9 | 1.9 ± 1.5 | 5.5 ± 2 | 7.9 ± 2.9 | 4.6 ± 2.1 | 4.6 ± 1.8 | 3.8 ± 2.1 | 4.3 ± 3.4 |
Shoot length total (cm) | 11 ± 5.3 | 12.8 ± 3.6 | 7.2 ± 5.3 | 6.9 ± 3.5 | 6.7 ± 3.8 | 4.9 ± 2.8 | 27.2 ± 8.1 | 27.3 ± 7.3 | 22 ± 12 | 15.4 ± 6.7 | 17.8 ± 11 | 8.6 ± 7.2 |
Leaves (no) | 28 ± 11 | 29 ± 7.6 | 21 ± 14 | 17 ± 9.7 | 15 ± 13 | 6 ± 6.5 | 46 ± 15 | 34 ± 9 | 38 ± 20 | 28 ± 12 | 32 ± 21 | 13 ± 12 |
Leaf/shoot ratio | 5.5 ± 1.3 | 8.3 ± 1.8 | 4.8 ± 2.3 | 5.5 ± 1.9 | 4.8 ± 1.6 | 4.2 ± 1.7 | 8.8 ± 2.1 | 9.1 ± 2 | 7.8 ± 3.5 | 8.2 ± 2.4 | 6.6 ± 3.4 | 5.8 ± 3.5 |
Seawater Pulse | Origin of Plants | Seawater × Origin | |
---|---|---|---|
max shoot length | F = 34.228; p < 0.001 | F = 27.787; p < 0.001 | F = 5.864; p < 0.05 |
mean shoot length | F = 23.838; p < 0.001 | F = 31.651; p < 0.001 | F = 3.077; n.s. |
total shoot length | F = 44.077; p < 0.001 | F = 0.0137; n.s. | F = 2.110; n.s. |
shoot number | F = 18.100; p < 0.001 | F = 20.992; p < 0.001 | F = 0.529; n.s. |
leaf number | F = 39.138; p < 0.001 | F = 5.147; p < 0.05 | F = 2.665; n.s. |
leaf/shoot ratio | F = 29.039; p < 0.001 | F = 7.095; p < 0.01 | F = 16.317 p < 0.001 |
Seawater Pulse | Origin of Plants | Seawater × Origin | |
---|---|---|---|
max shoot length | F = 43.186; p < 0.001 | F = 0.661; n.s. | F = 6.226; p < 0.01 |
mean shoot length | F = 17.617; p < 0.001 | F = 7.319; p < 0.01 | F = 4.798; p < 0.01 |
total shoot length | F = 38.543; p < 0.001 | F = 16.117; p < 0.001 | F = 4.766; p < 0.01 |
shoot number | F = 10.550; p < 0.001 | F = 38.301; p < 0.001 | F = 0.915; n.s. |
leaf number | F = 17.309; p < 0.001 | F = 35.838; p < 0.001 | F = 0.801; n.s. |
leaf/shoot ratio | F = 7.437; p < 0.001 | F = 0.787; n.s. | F = 1.471; n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markus-Michalczyk, H.; Smith, Z.; Bouma, T.J. Floodplain Forest Foundation Species Salix alba L. Is Resilient to Seawater Pulses during Winter. Limnol. Rev. 2024, 24, 250-265. https://doi.org/10.3390/limnolrev24030015
Markus-Michalczyk H, Smith Z, Bouma TJ. Floodplain Forest Foundation Species Salix alba L. Is Resilient to Seawater Pulses during Winter. Limnological Review. 2024; 24(3):250-265. https://doi.org/10.3390/limnolrev24030015
Chicago/Turabian StyleMarkus-Michalczyk, Heike, Zairesus Smith, and Tjeerd J. Bouma. 2024. "Floodplain Forest Foundation Species Salix alba L. Is Resilient to Seawater Pulses during Winter" Limnological Review 24, no. 3: 250-265. https://doi.org/10.3390/limnolrev24030015
APA StyleMarkus-Michalczyk, H., Smith, Z., & Bouma, T. J. (2024). Floodplain Forest Foundation Species Salix alba L. Is Resilient to Seawater Pulses during Winter. Limnological Review, 24(3), 250-265. https://doi.org/10.3390/limnolrev24030015