Early OCT Angiography Variations in Macular and Peripapillary Area after Uncomplicated Cataract Surgery and Correlation with Intraoperative Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Examinations
- Patients in Group 1 had less severe cataracts (C, NO, NC and P < 3).
- Patients in Group 2 had significant cataracts (C, NO, NC and P ≥ 3).
2.2. OCTA Protocol
2.3. Surgical Technique
2.4. Statistical Analysis
3. Results
3.1. Microvascular Variations
3.2. Subgroup Analysis
3.3. Correlation of Microvascular Parameters to Intraoperative Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, B.; Wong, T.; Wan, J.; Singer, S.; Hudson, C. The impact of cataract on the quantitative, non-invasive assessment of retinal blood Flow. Acta Ophthalmol. 2012, 90, e9–e12. [Google Scholar] [CrossRef] [PubMed]
- von Jagow, B.; Ohrloff, C.; Kohnen, T. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefes. Arch. Clin. Exp. Ophthalmol. 2007, 245, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Cagini, C.; Fiore, T.; Iaccheri, B.; Piccinelli, F.; Ricci, M.A.; Fruttini, D. Macular thickness measured by optical coherence tomography in a healthy population before and after uncomplicated cataract phacoemulsification surgery. Curr. Eye Res. 2009, 34, 1036–1041. [Google Scholar] [CrossRef]
- Perente, I.; Utine, C.A.; Ozturker, C.; Cakir, M.; Kaya, V.; Eren, H.; Kapran, Z.; Yilmaz, O.F. Evaluation of macular changes after uncomplicated phacoemulsification surgery by optical coherence tomography. Curr. Eye Res. 2007, 32, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Gharbiya, M.; Cruciani, F.; Cuozzo, G.; Parisi, F.; Russo, P.; Abdolrahimzadeh, S. Macular thickness changes evaluated with spectral domain optical coherence tomography after uncomplicated phacoemulsification. Eye 2013, 27, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, J.G.; Brezinski, M.E.; Tearney, G.J.; Boppart, S.A.; Bouma, B.; Hee, M.R.; Southern, J.F.; Swanson, E.A. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1995, 1, 970–972. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef]
- Zysk, A.M.; Nguyen, F.T.; Oldenburg, A.L.; Marks, D.L.; Boppart, S.A. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 2007, 12, 051403. [Google Scholar] [CrossRef]
- Cogliati, A.; Canavesi, C.; Hayes, A.; Tankam, P.; Duma, V.-F.; Santhanam, A.; Thompson, K.P.; Rolland, J.P. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy. Opt. Express 2016, 24, 13365–13374. [Google Scholar] [CrossRef]
- Sambhav, K.; Grover, S.; Chalam, K.V. The application of optical coherence tomography angiography in retinal diseases. Surv. Ophthalmol. 2017, 62, 838–866. [Google Scholar] [CrossRef]
- Lains, I.; Wang, J.C.; Cui, Y.; Katz, R.; Vingopoulos, F.; Staurenghi, G.; Vavvas, D.G.; Miller, J.W.; Miller, J.B. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog. Retin. Eye Res. 2021, 84, 100951. [Google Scholar] [CrossRef]
- Krizanovic, A.; Bjelos, M.; Busic, M.; Elabjer, B.K.; Rak, B.; Vukojevic, N. Macular perfusion analysed by optical coherence tomography angiography after uncomplicated phacoemulsification: Benefits beyond restoring vision. BMC Ophthalmol. 2021, 21, 71. [Google Scholar] [CrossRef]
- Pilotto, E.; Leonardi, F.; Stefanon, G.; Longhin, E.; Torresin, T.; Deganello, D.; Cavarzeran, F.; Miglionico, G.; Parrozzani, R.; Midena, E. Early retinal and choroidal OCT and OCT angiography signs of inflammation after uncomplicated cataract surgery. Br. J. Ophthalmol. 2019, 103, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wen, W.; Jiang, C.; Lu, Y. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J. Cataract Refract. Surg. 2018, 44, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Guadie, A.; Feng, L.; Fan, J.; Jiang, Z.; Liu, F. Influence of cataract surgery on macular vascular density in patients with myopia using optical coherence tomography angiography. Exp. Ther. Med. 2020, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Azhati, G.; Li, T.; Liu, F. Macular Vascular Density Changes following Cataract Surgery in Diabetic Patients: An Optical Coherence Tomography Angiography Study. J. Ophthalmol. 2021, 2021, 6641944. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, M.; Wang, Y.; Ben, S.; Gao, M.; Zhang, S.; Liu, H.; Sun, X. Short-Term Changes in Retinal Vasculature and Layer Thickness after Phacoemulsification Surgery. Curr. Eye Res. 2020, 45, 31–37. [Google Scholar] [CrossRef]
- Chylack, L.T., Jr.; Leske, M.C.; Sperduto, R.; Khu, P.; McCarthy, D. Lens Opacities Classification System. Arch. Ophthalmol. 1988, 106, 330–334. [Google Scholar] [CrossRef]
- McKeague, M.; Sharma, P.; Ho, A.C. Evaluation of the macula prior to cataract surgery. Curr. Opin. Ophthalmol. 2018, 29, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.L.; Addepalli, U.K.; Yadav, R.K.; Senthil, S.; Choudhari, N.S.; Garudadri, C.S. Effect of scan quality on diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. Am. J. Ophthalmol. 2014, 157, 719–727.e1. [Google Scholar] [CrossRef] [PubMed]
- Na, J.H.; Sung, K.R.; Lee, Y. Factors associated with the signal strengths obtained by spectral domain optical coherence tomography. Korean J. Ophthalmol. 2012, 26, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Camino, A.; Liu, L.; Zhang, X.; Wang, J.; Gao, S.S.; Jia, Y.; Huang, D. Signal strength reduction effects in OCT angiography. Ophthalmol. Retin. 2019, 3, 835–842. [Google Scholar] [CrossRef]
- Lujan, B.J.; Calhoun, C.T.; Glassman, A.R.; Googe, J.M.; Jampol, L.M.; Melia, M.; Schlossman, D.K.; Sun, J.K. Optical coherence tomography angiography quality across three multicenter clinical studies of diabetic retinopathy. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Z.; Sun, R.; Liu, D.; Liu, N. Subfoveal choroidal and macular thickness changes after phacoemulsification using enhanced depth imaging optical coherence tomography. Ophthalmic Res. 2018, 60, 243–249. [Google Scholar] [CrossRef]
- Giansanti, F.; Bitossi, A.; Giacomelli, G.; Virgili, G.; Pieretti, G.; Giuntoli, M.; Abbruzzese, G.; Menchini, U. Evaluation of macular thickness after uncomplicated cataract surgery using optical coherence tomography. Eur. J. Ophthalmol. 2013, 23, 751–756. [Google Scholar] [CrossRef]
- Gawecki, M.; Pradzynska, N.; Karska-Basta, I. Long-Term Variations in Retinal Parameters after Uncomplicated Cataract Surgery. J. Clin. Med. 2022, 11, 3426. [Google Scholar] [CrossRef] [PubMed]
- Wei, E.; Jia, Y.; Tan, O.; Potsaid, B.; Liu, J.J.; Choi, W.; Fujimoto, J.G.; Huang, D. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS ONE 2013, 8, e81343. [Google Scholar] [CrossRef]
- Baldascino, A.; Ripa, M.; Carla, M.M.; Caporossi, T.; Grieco, G.; Gambini, G.; De Vico, U.; Raguso, G.; Kilian, R.; Rizzo, C.; et al. Optical Coherence Tomography Angiography to Estimate Early Retinal Blood Flow Changes after Uncomplicated Cataract Surgery. Vision 2022, 6, 38. [Google Scholar] [CrossRef]
- Ozkan, B.; Ciloglu, E. Evaluation of the Effect of Uncomplicated Cataract Surgery on Retina and Optic Disc: Optical Coherence Tomography Angiography Study. Korean J. Ophthalmol. 2022, 36, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Hoshino, M.; Hoshino, S.; Mori, A.; Sakamoto, K.; Ishii, K. Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp. Eye Res. 2015, 135, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, M.; Karabulut, S.; Sul, S.; Karalezli, A. Optic nerve head microvascular changes after phacoemulsification surgery. Graefes. Arch. Clin. Exp. Ophthalmol. 2019, 257, 2729–2733. [Google Scholar] [CrossRef] [PubMed]
- Hilton, E.J.; Hosking, S.L.; Gherghel, D.; Embleton, S.; Cunliffe, I.A. Beneficial effects of small-incision cataract surgery in patients demonstrating reduced ocular blood flow characteristics. Eye 2005, 19, 670–675. [Google Scholar] [CrossRef]
- Carpineto, P.; Mastropasqua, R.; Marchini, G.; Toto, L.; Di Nicola, M.; Di Antonio, L. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br. J. Ophthalmol. 2016, 100, 671–676. [Google Scholar] [CrossRef]
- Yu, S.; Frueh, B.E.; Steinmair, D.; Ebneter, A.; Wolf, S.; Zinkernagel, M.S.; Munk, M.R. Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS ONE 2018, 13, e0204501. [Google Scholar] [CrossRef] [Green Version]
- Kurt, A.; Kilic, R. The Effects of Uncomplicated Cataract Surgery on Retinal Layer Thickness. J. Ophthalmol. 2018, 2018, 7218639. [Google Scholar] [CrossRef] [Green Version]
- Gołebiewska, J.; Kęcik, D.; Turczyńska, M.; Moneta-Wielgoś, J.; Kopacz, D.; Pihowicz-Bakoń, K. Evaluation of macular thickness after uneventful phacoemulsification in selected patient populations using optical coherence tomography. Klin. Ocz. 2014, 116, 242–247. [Google Scholar]
- Wielders, L.H.P.; Schouten, J.; Winkens, B.; van den Biggelaar, F.; Veldhuizen, C.A.; Findl, O.; Murta, J.C.N.; Goslings, W.R.O.; Tassignon, M.J.; Joosse, M.V.; et al. European multicenter trial of the prevention of cystoid macular edema after cataract surgery in nondiabetics: ESCRS PREMED study report 1. J. Cataract Refract. Surg. 2018, 44, 429–439. [Google Scholar] [CrossRef]
- Kessel, L.; Tendal, B.; Jorgensen, K.J.; Erngaard, D.; Flesner, P.; Andresen, J.L.; Hjortdal, J. Post-cataract prevention of inflammation and macular edema by steroid and nonsteroidal anti-inflammatory eye drops: A systematic review. Ophthalmology 2014, 121, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Chen, M.; Forrester, J.V.; Lois, N. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion. Investig. Ophthalmol. Vis. Sci. 2011, 52, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Anand, A.; Fernandez, S.; Sakurai, E.; Lynn, B.C.; Kuziel, W.A.; Rollins, B.J.; Ambati, B.K. An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice. Nat. Med. 2003, 9, 1390–1397. [Google Scholar] [CrossRef]
- Taravati, P.; Lam, D.L.; Leveque, T.; Van Gelder, R.N. Postcataract surgical inflammation. Curr. Opin. Ophthalmol. 2012, 23, 12–18. [Google Scholar] [CrossRef]
- Melancia, D.; Abegao Pinto, L.; Marques-Neves, C. Cataract surgery and intraocular pressure. Ophthalmic Res. 2015, 53, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Kur, J.; Newman, E.A.; Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 2012, 31, 377–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; Macvicar, B.A.; Newman, E.A. Glial and neuronal control of brain blood flow. Nature 2010, 468, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artigas, J.M.; Felipe, A.; Navea, A.; Fandino, A.; Artigas, C. Spectral transmission of the human crystalline lens in adult and elderly persons: Color and total transmission of visible light. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4076–4084. [Google Scholar] [CrossRef]
Data (Mean ± SD) | ||
---|---|---|
Age (years) | 67.8 ± 10.9 | |
Sex (male/female) | 35/30 | |
Study Eye | Fellow Eye | |
Baseline CDVA (LogMAR) | 0.32 ± 0.21 | 0.15 ± 0.14 |
Final CDVA (LogMAR) | 0.0 ± 0.0 | 0.17 ± 0.16 |
Baseline SE (D) | 0.45 ± 0.24 | 0.36 ± 0.28 |
Final SE (D) | 0.10 ± 0.05 | 0.36 ± 0.28 |
Baseline IOP (mmHg) | 13.8 ± 3.9 | 14.2 ± 2.6 |
One-week IOP (mmHg) | 11.3 ± 4.8 | 14.1 ± 2.9 |
Final IOP (mmHg) | 13.2 ± 4.3 | 14.4 ± 3.0 |
EPT (seconds) | 86.4 ± 18.7 | - |
CDE (µJ) | 10.1 ± 3.5 | - |
OCTA Parameters | T0 | T7 | p | T30 | p | |
---|---|---|---|---|---|---|
SCP | Superior (%) | 43.0 ± 3.6 | 43.2 ± 4.6 | 0.78 | 45.4 ± 5.3 | 0.0003 |
Inferior (%) | 42.9 ± 4.9 | 43.6 ± 4.6 | 0.58 | 45.8 ± 5.6 | 0.001 | |
Whole (%) | 43.0 ± 4.2 | 43.4 ± 4.6 | 0.85 | 45.6 ± 5.4 | 0.0001 | |
DCP | Superior (%) | 36.6 ± 7.5 | 37.3 ± 7.4 | 0.48 | 42.9 ± 9.7 | 0.0005 |
Inferior (%) | 38.2 ± 8.3 | 38.2 ± 10.0 | 0.95 | 44.6 ± 8.6 | 0.003 | |
Whole (%) | 37.3 ± 7.4 | 37.4 ± 11.1 | 0.92 | 43.7 ± 9.1 | 0.0002 | |
FAZ | Area (mm2) | 0.38 ± 0.22 | 0.26 ± 0.10 | 0.01 | 0.27 ± 0.11 | 0.005 |
Perimeter (mm) | 2.53 ± 0.83 | 2.06 ± 0.48 | 0.003 | 2.04 ± 0.45 | 0.0008 | |
FD (%) | 40.0 ± 6.8 | 41.65 ± 6.5 | 0.78 | 44.9 ± 5.7 | 0.0016 | |
ONH | Whole (%) | 49.6 ± 2.7 | 51.4 ± 4.6 | 0.001 | 49.3 ± 4.0 | 0.95 |
RPC (%) | 45.6 ± 4.2 | 48.5 ± 6.2 | 0.001 | 44.8 ± 4.6 | 0.24 |
Parameters | SCP Vessel Density | DCP Vessel Density | ONH Capillary Density | |||
---|---|---|---|---|---|---|
Pearson r | p | Pearson r | p | Pearson r | p | |
EPT | 0.12 | 0.34 | 0.19 | 0.15 | −0.18 | 0.33 |
CDE | 0.22 | 0.09 | 0.24 | 0.08 | −0.21 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldascino, A.; Carlà, M.M.; Caporossi, T.; Gambini, G.; Ripa, M.; Grieco, G.; Giannuzzi, F.; De Vico, U.; Savastano, A.; Rizzo, S. Early OCT Angiography Variations in Macular and Peripapillary Area after Uncomplicated Cataract Surgery and Correlation with Intraoperative Parameters. Photonics 2023, 10, 53. https://doi.org/10.3390/photonics10010053
Baldascino A, Carlà MM, Caporossi T, Gambini G, Ripa M, Grieco G, Giannuzzi F, De Vico U, Savastano A, Rizzo S. Early OCT Angiography Variations in Macular and Peripapillary Area after Uncomplicated Cataract Surgery and Correlation with Intraoperative Parameters. Photonics. 2023; 10(1):53. https://doi.org/10.3390/photonics10010053
Chicago/Turabian StyleBaldascino, Antonio, Matteo Mario Carlà, Tomaso Caporossi, Gloria Gambini, Matteo Ripa, Giulia Grieco, Federico Giannuzzi, Umberto De Vico, Alfonso Savastano, and Stanislao Rizzo. 2023. "Early OCT Angiography Variations in Macular and Peripapillary Area after Uncomplicated Cataract Surgery and Correlation with Intraoperative Parameters" Photonics 10, no. 1: 53. https://doi.org/10.3390/photonics10010053
APA StyleBaldascino, A., Carlà, M. M., Caporossi, T., Gambini, G., Ripa, M., Grieco, G., Giannuzzi, F., De Vico, U., Savastano, A., & Rizzo, S. (2023). Early OCT Angiography Variations in Macular and Peripapillary Area after Uncomplicated Cataract Surgery and Correlation with Intraoperative Parameters. Photonics, 10(1), 53. https://doi.org/10.3390/photonics10010053