Photonic Crystal-Based Water Concentration Estimation in Blood Using Machine Learning for Identification of the Haematological Disorder
Abstract
:1. Introduction
2. Numerical Analysis
3. Design Structure
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malekshahi, M. Evolution of intense laser pulse spot size propagating in collisional plasma embedded in a magnetic field with variable direction. Phys. Plasmas 2017, 25, 012302. [Google Scholar] [CrossRef]
- Naumenko, E.K. Back-scattered radiation from the capillary network under the influence of low-power laser heating (Invited Paper). In Saratov Fall Meeting 2004: Optical Technologies in Biophysics and Medicine VI; SPIE: Bellingham, WA, USA, 2005; pp. 195–201. [Google Scholar]
- Lijnema, T.H.; Huizenga, J.R.; Jager, J.; Mackor, A.J.; Gips, C.H. Gravimetric determination of the water concentration in whole blood, plasma and erythrocytes and correlations with hematological and clinic chemical parameters. Clin. Chim. Acta 1993, 214, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, S.H.; Ryu, J.K. Changes in the Blood Components Caused by Water Intake. Korean J. Clin. Lab. Sci. 2007, 49, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Rodak, B.F.; Frisma, G.A.; Keohane, E.M. Hematology: Clinical Principles and Applications, 4th ed.; Elesvier: Amsterdam, The Netherlands, 2012; pp. 1–6. [Google Scholar]
- Coban, E.; Ozdogan, M.; Yazicioglu, G.; Akcit, F. The mean platelet volume in patients with obesity. Int. J. Clin. Pract. 2005, 59, 981–982. [Google Scholar] [CrossRef]
- Elblbesy, M.A. The refractive index of human blood measured at the visible spectral region by single-fiber reflectance spectroscopy. AIMS Biophys. 2021, 8, 57–65. [Google Scholar] [CrossRef]
- Meinke, M.C.; Müller, G.J.; Helfmann, J.; Friebel, M. Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near-infrared wavelength range. J. Biomed. Opt. 2007, 12, 014024. [Google Scholar] [CrossRef]
- Liu, S.; Deng, Z.; Li, J.; Wang, J.; Huang, N.; Cui, R.; Zhang, Q.; Mei, J.; Zhou, W.; Zhang, C.; et al. Measurement of the refractive index of whole blood and its components for a continuous spectral region. J. Biomed. Opt. 2019, 24, 1–5. [Google Scholar] [CrossRef]
- Gienger, J.; Smuda, K.; Müller, R.; Bär, M.; Neukammer, J. Refractive index of human red blood cells between 290 nm and 1100 nm determined by optical extinction measurements. Sci. Rep. 2019, 9, 4623. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.L.; Chen, J.Y.; Xu, L.; Wang, P.N. Refractive index measurement for biomaterial samples by total internal reflection. Phys. Med. Biol. 2006, 51, N371–N379. [Google Scholar] [CrossRef]
- Friebel, M.; Meinke, M.C. Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. J. Biomed. Opt. 2005, 10, 064019. [Google Scholar] [CrossRef]
- Heller, W. Remarks on refractive index mixture rules. J. Phys. Chem. 1965, 69, 1123–1129. [Google Scholar] [CrossRef]
- Tuchin, V.V. Handbook of Optical Biomedical Diagnostics: Methods; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2016. [Google Scholar]
- Kohl, M.; Cope, M.; Essenpreis, M.; BÖCker, D. Influence of glucose concentration on light scattering in tissue-simulating phantoms. Opt. Lett. 1994, 19, 2170–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oduncuoğlu, M. Refractive Index Formula of Blood as a Function of Temperature and Concentration. An. Acad. Bras. Ciênc. 2021, 93, e20201634. [Google Scholar] [CrossRef] [PubMed]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Wu, X.; Xiao, S.; Liu, G.; Li, H. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express. 2021, 29, 23976–23987. [Google Scholar] [CrossRef]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Scherer, A.; Painter, O.; Vuckovic, J.; Loncar, M.; Yoshie, T. Photonic crystals for confining, guiding, and emitting light. IEEE Trans. Nanotechnol. 2002, 1, 4–11. [Google Scholar] [CrossRef]
- Biswas, U.; Rakshit, J.K.; Bharti, G.K. Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt. Quantum Electron. 2020, 52, 19. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Troia, B.; Paolicelli, A.; Leonardis, F.D.; Passaro, V.M.N. Photonic Crystals for Optical Sensing: A Review. Adv. Photonic Cryst. 2013, 241–295. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Sahu, S.; Mudgal, N.; Singh, G.; Bhatnagar, S.K. Photonic Crystal Cavities based Biosensors: A Review. In Proceedings of the 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), Lakshmangarh, India, 21–22 February 2020; pp. 1–5. [Google Scholar]
- Agarwal, A.; Mudgal, N.; Sahu, S.; Singh, G.; Bhatnagar, S.K. Design of a Nanocavity Photonic Crystal Structure for Biosensing Application. Opt. Wirel. Technol. Proc. OWT 2021, 771, 321–330. [Google Scholar]
- Agarwal, A.; Mudgal, N.; Saharia, A.; Singh, G.; Bhatnagar, S.K. Silicon nitride based photonic biosensor for analyzing blood diseases. Mater. Today Proc. 2022, 66, 3507–3510. [Google Scholar] [CrossRef]
Hematologic Parameters | Less Water Concentration | Normal Water Concentration |
---|---|---|
WBC (L) | 6.975 | 6.63 |
RBC (L) | 4.792 | 4.78 |
Hgb (g/dL) | 12.238 | 10.9 |
MCV (fL) | 87.63 | 82.67 |
MCH (pg) | 26.54 | 24.67 |
MCHC (g/dL) | 30.1 | 29.067 |
MPV (fL) | 10.95 | 11.6 |
Design Parameter | Parameter Value |
---|---|
Substrate material | Silicon (Si) |
Refractive index of the substrate | 3.45 |
Refractive index of sensing cavity | Refractive index of plasma |
Lattice constant | 0.48 μm |
Radius of air holes | 0.14 μm |
Radius of point defect a | 0.20 μm |
Radius of point defect b | 0.08 μm |
Radius of point defect c | 0.05 μm |
Lattice constant for point defect c | 0.405 μm |
Photonic band gap region | 0.305–0.446 |
0.686–0.723 |
f (Water) | (Water) | f (Albumin) | (Albumin) for 55 g/L | (pl) |
---|---|---|---|---|
90% | 1.33 | 10% | 1.3387 | 1.3309 |
89% | 1.33 | 10% | 1.3387 | 1.3243 |
88% | 1.33 | 10% | 1.3387 | 1.3177 |
87% | 1.33 | 10% | 1.3387 | 1.3110 |
86% | 1.33 | 10% | 1.3387 | 1.3044 |
85% | 1.33 | 10% | 1.3387 | 1.2978 |
84% | 1.33 | 10% | 1.3387 | 1.2912 |
83% | 1.33 | 10% | 1.3387 | 1.2846 |
82% | 1.33 | 10% | 1.3387 | 1.2780 |
81% | 1.33 | 10% | 1.3387 | 1.2714 |
Water Percentage | f (RBC) | (RBC) | f (Plasma) | (Plasma) | (Blood) |
---|---|---|---|---|---|
90% | 45% | 1.33 | 55% | 1.3309 | 1.3305 |
89% | 45% | 1.33 | 55% | 1.3243 | 1.3267 |
88% | 45% | 1.33 | 55% | 1.3177 | 1.3232 |
87% | 45% | 1.33 | 55% | 1.311 | 1.3196 |
86% | 45% | 1.33 | 55% | 1.3044 | 1.3159 |
85% | 45% | 1.33 | 55% | 1.2978 | 1.3123 |
84% | 45% | 1.33 | 55% | 1.2912 | 1.3087 |
83% | 45% | 1.33 | 55% | 1.2846 | 1.3050 |
82% | 45% | 1.33 | 55% | 1.278 | 1.3014 |
81% | 45% | 1.33 | 55% | 1.2714 | 1.2978 |
Water Concentration | Refractive Index of Plasma (pl) | Position of Resonant Peak (nm) | Sensitivity (nm/RIU) |
---|---|---|---|
90% | 1.3309 | 1571.25 | Reference |
89% | 1.3243 | 1567.52 | 565 |
88% | 1.3177 | 1563.79 | 565 |
87% | 1.311 | 1559.82 | 574 |
86% | 1.3044 | 1556.23 | 567 |
85% | 1.2978 | 1552.15 | 577 |
84% | 1.2912 | 1548.67 | 569 |
83% | 1.2846 | 1544.84 | 571 |
82% | 1.278 | 1541.23 | 567 |
81% | 1.2714 | 1537.90 | 560 |
Water Concentration | Refractive Index of blood (Blood) | Position of Resonant Peak (nm) | Sensitivity (nm/RIU) |
---|---|---|---|
90% | 1.3305 | 1571.10 | Reference |
89% | 1.3269 | 1568.97 | 570 |
88% | 1.3232 | 1566.92 | 571 |
87% | 1.3196 | 1564.73 | 579 |
86% | 1.3159 | 1562.76 | 575 |
85% | 1.3123 | 1560.51 | 575 |
84% | 1.3087 | 1558.60 | 572 |
83% | 1.3050 | 1556.49 | 578 |
82% | 1.3014 | 1554.51 | 574 |
81 % | 1.2978 | 1552.68 | 573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Mudgal, N.; Choure, K.K.; Pandey, R.; Singh, G.; Bhatnagar, S.K. Photonic Crystal-Based Water Concentration Estimation in Blood Using Machine Learning for Identification of the Haematological Disorder. Photonics 2023, 10, 71. https://doi.org/10.3390/photonics10010071
Agarwal A, Mudgal N, Choure KK, Pandey R, Singh G, Bhatnagar SK. Photonic Crystal-Based Water Concentration Estimation in Blood Using Machine Learning for Identification of the Haematological Disorder. Photonics. 2023; 10(1):71. https://doi.org/10.3390/photonics10010071
Chicago/Turabian StyleAgarwal, Ankit, Nitesh Mudgal, Kamal Kishor Choure, Rahul Pandey, Ghanshyam Singh, and Satish Kumar Bhatnagar. 2023. "Photonic Crystal-Based Water Concentration Estimation in Blood Using Machine Learning for Identification of the Haematological Disorder" Photonics 10, no. 1: 71. https://doi.org/10.3390/photonics10010071
APA StyleAgarwal, A., Mudgal, N., Choure, K. K., Pandey, R., Singh, G., & Bhatnagar, S. K. (2023). Photonic Crystal-Based Water Concentration Estimation in Blood Using Machine Learning for Identification of the Haematological Disorder. Photonics, 10(1), 71. https://doi.org/10.3390/photonics10010071