High-Sensitivity Temperature Sensor Based on the Perfect Metamaterial Absorber in the Terahertz Band
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectrum
3.2. Properties
3.3. Principle
3.4. Tunability
3.5. Temperature Sensor
3.6. Thermal Switch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, K.; Singh, G. Terahertz planar antennas for future wireless communication: A technical review. Infrared Phys. Technol. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Son, J.-H. Terahertz Biomedical Science and Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Cao, W.; Al-Naib, I.; Cong, L.; Withayachumnankul, W.; Zhang, W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett. 2014, 105, 171101. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Klimov, N.; Purdy, T.; Ahmed, Z. Towards replacing resistance thermometry with photonic thermometry. Sens. Actuators A: Phys. 2017, 269, 308–312. [Google Scholar] [CrossRef]
- Guan, X.; Wang, X.; Frandsen, L.H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 2016, 24, 16349–16356. [Google Scholar] [CrossRef]
- Klimov, N.N.; Mittal, S.; Berger, M.; Ahmed, Z. On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 2015, 40, 3934–3936. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, A. Ultrahigh-sensitive temperature sensor based on modal interference in a metal-under-clad ridge waveguide with a polymer upper cladding. Appl. Opt. 2017, 56, 4685–4689. [Google Scholar] [CrossRef]
- Kong, Y.; Wei, Q.; Liu, C.; Wang, S. Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide. Opt. Commun. 2017, 384, 85–88. [Google Scholar] [CrossRef]
- Vafapour, Z.; Alaei, H. Subwavelength Micro-Antenna for Achieving Slow Light at Microwave Wavelengths via Electromagnetically Induced Transparency in 2D Metamaterials. Plasmonics 2016, 12, 1343–1352. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Romano, I.; Monzón-Hernández, D.; Moreno-Hernández, C.; Moreno-Hernandez, D.; Villatoro, J. Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer. IEEE Photonics Technol. Lett. 2015, 27, 2591–2594. [Google Scholar] [CrossRef]
- Zhao, R.-A.; Lang, T.; Chen, J.; Hu, J. Polarization-maintaining fiber sensor for simultaneous measurement of the temperature and refractive index. Opt. Eng. 2017, 56, 057113. [Google Scholar] [CrossRef]
- Karim, H.; Delfin, D.; Chavez, L.A.; Delfin, L.; Martinez, R.; Avila, J.; Rodriguez, C.; Rumpf, R.C.; Love, N.; Lin, Y. Metamaterial Based Passive Wireless Temperature Sensor. Adv. Eng. Mater. 2017, 19, 1600741. [Google Scholar] [CrossRef]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zakery, A. Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial. Appl. Phys. A 2017, 123, 797. [Google Scholar] [CrossRef]
- Radhouene, M.; Chhipa, M.K.; Najjar, M.; Robinson, S.; Suthar, B. Novel design of ring resonator based temperature sensor using photonics technology. Photon- Sens. 2017, 7, 311–316. [Google Scholar] [CrossRef]
- Kim, H.-T.; Yu, M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 2016, 24, 9501–9510. [Google Scholar] [CrossRef]
- Xia, H.; Lei, L.; Hong, W.; Xu, S. A novel Ce3+/Mn2+/Eu3+ tri-doped GdF3 nanocrystals for optical temperature sensor and anti-counterfeiting. J. Alloy. Compd. 2018, 757, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.-S.; Liu, T.; Yan, X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Hu, J.; Lang, T.; Shi, G.-H. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface. Opt. Express 2017, 25, 15241–15251. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt. Commun. 2020, 462, 125265. [Google Scholar] [CrossRef]
- Li, D.; Huang, H.; Xia, H.; Zeng, J.; Li, H.; Xie, D. Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator. Results Phys. 2018, 11, 659–664. [Google Scholar] [CrossRef]
- Sheta, E.; Choudhury, P.; Ibrahim, A.-B.M. Pixelated graphene-strontium titanate metamaterial supported tunable dual-band temperature sensor. Opt. Mater. 2021, 117, 111197. [Google Scholar] [CrossRef]
- Ghafari, S.; Forouzeshfard, M.R.; Vafapour, Z. Thermo Optical Switching and Sensing Applications of an Infrared Metamaterial. IEEE Sens. J. 2019, 20, 3235–3241. [Google Scholar] [CrossRef]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y. Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure. Opt. Mater. 2020, 102, 109801. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, Y.; Luo, H. Temperature Tunable Narrow-Band Terahertz Metasurface Absorber Based on InSb Micro-Cylinder Arrays for Enhanced Sensing Application. IEEE Access 2020, 8, 82981–82988. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Qian, H. Tunable terahertz dual-band perfect absorber based on the combined InSb resonator structures for temperature sensing. J. Opt. Soc. Am. B 2021, 38, 2638. [Google Scholar] [CrossRef]
- Zhong, M. Design and verification of a temperature-sensitive broadband metamaterial absorber based on VO2 film. Opt. Mater. 2020, 109, 110467. [Google Scholar] [CrossRef]
- Hamouleh-Alipour, A.; Mir, A.; Farmani, A. Analytical Modeling and Design of a Graphene Metasurface Sensor for Thermo-Optical Detection of Terahertz Plasmons. IEEE Sens. J. 2020, 21, 4525–4532. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photon- 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Zhu, W.; Rukhlenko, I.D.; Premaratne, M. Graphene metamaterial for optical reflection modulation. Appl. Phys. Lett. 2013, 102, 241914. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Zhu, L.; Yao, J. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 2016, 8, 15273–15280. [Google Scholar] [CrossRef] [PubMed]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Chang, D.E.; de Abajo, F.J.G. Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lakhtakia, A. Semiconductor split-ring resonators for thermally tunable terahertz metamaterials. J. Mod. Opt. 2009, 56, 554–557. [Google Scholar] [CrossRef]
- Zhu, J.; Han, J.; Tian, Z.; Gu, J.; Chen, Z.; Zhang, W. Thermal broadband tunable Terahertz metamaterials. Opt. Commun. 2011, 284, 3129–3133. [Google Scholar] [CrossRef]
- Howells, S.C.; Schlie, L.A. Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl. Phys. Lett. 1996, 69, 550–552. [Google Scholar] [CrossRef]
- Rode, D.L. Electron transport in insb, inas, and inp. Phys. Rev. B 1971, 3, 3287. [Google Scholar] [CrossRef]
- Shi, C.; He, X.; Liu, F.; Lin, F.; Zhang, H. Investigation of graphene-supported tunable asymmetric terahertz metamaterials. J. Opt. Soc. Am. B 2018, 35, 575–581. [Google Scholar] [CrossRef]
- Sánchez-Gil, J.A.; Rivas, J.G. Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces. Phys. Rev. B 2006, 73, 205410. [Google Scholar] [CrossRef]
- Oszwałldowski, M.; Zimpel, M. Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb. J. Phys. Chem. Solids 1988, 49, 1179–1185. [Google Scholar] [CrossRef]
- Halevi, P.; Ramos-Mendieta, F. Tunable photonic crystals with semiconducting constituents. Phys. Rev. Lett. 2000, 85, 1875. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef]
- Falkovsky, L.A.; Pershoguba, S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 2007, 76, 153410. [Google Scholar] [CrossRef]
- Islam, M.; Sultana, J.; Biabanifard, M.; Vafapour, Z.; Nine, M.; Dinovitser, A.; Cordeiro, C.; Ng, B.-H.; Abbott, D. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 2019, 158, 559–567. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
Reference | [23] | [29] | [44] | [27] | [28] | Proposed |
---|---|---|---|---|---|---|
Temperature sensitivity (GHz/K) | 0.319 | 2.13 | 16.25 | 10.3 | 9.6 | 21.9 |
Maximum absorption rate (%) | 99.8 | 99.9 | 98.7 | 99.9 | 99.9 | 99.9 |
Frequency band (THz) | 0.01–0.3 | 1.6–2.0 | 1.5–2.0 | 0.4–2.2 | 1.1–1.6 | 1.0–3.5 |
Temperature range (K) | 200–500 | 295–320 | 270–290 | 190–230 | 270–295 | 260–310 |
Polarization-insensitive | Yes | Yes | Yes | Yes | Yes | Yes |
Wide angle absorption | No | No | No | - | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qiu, Y.; Zhang, Y.; Lang, T.; Zhu, F. High-Sensitivity Temperature Sensor Based on the Perfect Metamaterial Absorber in the Terahertz Band. Photonics 2023, 10, 92. https://doi.org/10.3390/photonics10010092
Wang Y, Qiu Y, Zhang Y, Lang T, Zhu F. High-Sensitivity Temperature Sensor Based on the Perfect Metamaterial Absorber in the Terahertz Band. Photonics. 2023; 10(1):92. https://doi.org/10.3390/photonics10010092
Chicago/Turabian StyleWang, Yan, Yanqing Qiu, Yingping Zhang, Tingting Lang, and Fengjie Zhu. 2023. "High-Sensitivity Temperature Sensor Based on the Perfect Metamaterial Absorber in the Terahertz Band" Photonics 10, no. 1: 92. https://doi.org/10.3390/photonics10010092
APA StyleWang, Y., Qiu, Y., Zhang, Y., Lang, T., & Zhu, F. (2023). High-Sensitivity Temperature Sensor Based on the Perfect Metamaterial Absorber in the Terahertz Band. Photonics, 10(1), 92. https://doi.org/10.3390/photonics10010092