Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments
Abstract
:1. Introduction
2. Measurement in Quantum Physics
- 1.
- are Hermitian, ;
- 2.
- satisfy ,
- 3.
- are positive semi-definite matrices;
- 4.
- are idempotent: ,
- Rank = 1: a set of un-normalized vectors satisfying
- Rank > 1: a set of Hermitian operators satisfying
3. Bell NonLocality Sharing: The Unsharp Measurement Formalism
- Unbiased: 0 and 1 are inputted with the same frequency for both Bob and Bob
- Biased: 0 and 1 are inputted with different frequencies for all Bobs
4. Advances in Sequential Unsharp Measurements for Quantum Correlation Recycling
4.1. Theoretical Exploration in Quantum Mechanics Foundation
4.2. Experimental Demonstration Based on Optical Qubits
- if , the maximization of min(, ) is equivalent to maximize the value of because that is always no more than in this region, and the setting of measurement directions may be same as the original proposal [34];
- if , may be not greater than in that case, so they choose to consider raising the Bell-CHSH nonlocality sharing between Alice and Bob by the increase of . Their analysis shows that the similarity of Bob’s two measurement directions can raise the quantum correlation for the Alice–Bob pair, and the measurement directions setting and for Bob/Bob is now written as
5. Discussion
6. Concluding Remarks and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Skrzypczyk, P. Quantum steering: A review with focus on semidefinite programming. Rep. Prog. Phys. 2016, 80, 024001. [Google Scholar] [CrossRef]
- Doherty, A.C.; Parrilo, P.A.; Spedalieri, F.M. Distinguishing Separable and Entangled States. Phys. Rev. Lett. 2002, 88, 187904. [Google Scholar] [CrossRef]
- Pusey, M.F. Negativity and steering: A stronger Peres conjecture. Phys. Rev. A 2013, 88, 032313. [Google Scholar] [CrossRef]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Bera, A.; Das, T.; Sadhukhan, D.; Roy, S.S.; De, A.S.; Sen, U. Quantum discord and its allies: A review of recent progress. Reports on Progress in Physics 2017, 81, 024001. [Google Scholar] [CrossRef]
- Köhnke, S.; Agudelo, E.; Schünemann, M.; Schlettwein, O.; Vogel, W.; Sperling, J.; Hage, B. Quantum Correlations beyond Entanglement and Discord. Phys. Rev. Lett. 2021, 126, 170404. [Google Scholar] [CrossRef]
- Simon Kochen, E.S. The Problem of Hidden Variables in Quantum Mechanics. Indiana Univ. Math. J. 1968, 17, 59–87. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Fu, Y.; Liu, W.B.; Xie, Y.M.; Li, B.H.; Zhou, M.G.; Yin, H.L.; Chen, Z.B. Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Phys. Rev. Res. 2023, 5, 033077. [Google Scholar] [CrossRef]
- Yin, H.L.; Fu, Y.; Li, C.L.; Weng, C.X.; Li, B.H.; Gu, J.; Lu, Y.S.; Huang, S.; Chen, Z.B. Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 2023, 10, nwac228. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Fu, Y.; Liu, W.B.; Xie, Y.M.; Li, B.H.; Zhou, M.G.; Yin, H.L.; Chen, Z.B. Breaking universal limitations on quantum conference key agreement without quantum memory. Commun. Phys. 2023, 6, 122. [Google Scholar] [CrossRef]
- Murao, M.; Jonathan, D.; Plenio, M.B.; Vedral, V. Quantum telecloning and multiparticle entanglement. Phys. Rev. A 1999, 59, 156–161. [Google Scholar] [CrossRef]
- Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829–1834. [Google Scholar] [CrossRef]
- Scarani, V.; Gisin, N. Quantum Communication between N Partners and Bell’s Inequalities. Phys. Rev. Lett. 2001, 87, 117901. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.A.; Zhang, A.N.; Yang, T.; Briegel, H.J.; Pan, J.W. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 2004, 430, 54–58. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef]
- Toner, B.; Verstraete, F. Monogamy of Bell correlations and Tsirelson’s bound. arXiv 2006, arXiv:quant-ph/quant-ph/0611001. [Google Scholar]
- Reid, M.D. Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering. Phys. Rev. A 2013, 88, 062108. [Google Scholar] [CrossRef]
- Lami, L.; Hirche, C.; Adesso, G.; Winter, A. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations. Phys. Rev. Lett. 2016, 117, 220502. [Google Scholar] [CrossRef]
- Heisenberg, W. The Physical Principles of the Quantum Theory; Courier Corporation: North Chelmsford, MA, USA, 1949. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition; Princeton University Press: Princeton, NJ, USA, 2018; Volume 53. [Google Scholar]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. 1964, 134, B1410–B1416. [Google Scholar] [CrossRef]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef]
- Duck, I.M.; Stevenson, P.M.; Sudarshan, E.C.G. The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D 1989, 40, 2112–2117. [Google Scholar] [CrossRef]
- Sciarrino, F.; Ricci, M.; De Martini, F.; Filip, R.; Mišta, L. Realization of a Minimal Disturbance Quantum Measurement. Phys. Rev. Lett. 2006, 96, 020408. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Peres, A. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Phys. Rev. A 1996, 53, 2038–2045. [Google Scholar] [CrossRef]
- Buscemi, F.; Horodecki, M. Towards a Unified Approach to Information-Disturbance Tradeoffs in Quantum Measurements. Open Syst. Inf. Dyn. 2009, 16, 29–48. [Google Scholar] [CrossRef]
- Silva, R.; Gisin, N.; Guryanova, Y.; Popescu, S. Multiple Observers Can Share the Nonlocality of Half of an Entangled Pair by Using Optimal Weak Measurements. Phys. Rev. Lett. 2015, 114, 250401. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Ghosal, A.; Sasmal, S.; Mal, S.; Majumdar, A.S. Facets of bipartite nonlocality sharing by multiple observers via sequential measurements. Phys. Rev. A 2019, 99, 022305. [Google Scholar] [CrossRef]
- Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. npj Quantum Inf. 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Pironio, S.; Acín, A.; Massar, S.; de La Giroday, A.B.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021–1024. [Google Scholar] [CrossRef]
- Stipsić, P.; Milivojević, M. Control of a spin qubit in a lateral GaAs quantum dot based on symmetry of gating potential. Phys. Rev. B 2020, 101, 165302. [Google Scholar] [CrossRef]
- Stavrou, V.N. Spin qubits: Spin relaxation in coupled quantum dots. J. Phys. Condens. Matter 2018, 30, 455301. [Google Scholar] [CrossRef]
- Mal, S.; Majumdar, A.S.; Home, D. Sharing of nonlocality of a single member of an entangled pair of qubits is not possible by more than two unbiased observers on the other wing. Mathematics 2016, 4, 48. [Google Scholar] [CrossRef]
- Busch, P.; Lahti, P.J.; Mittelstaedt, P. The Quantum Theory of Measurement; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Busch, P.; Grabowski, M.; Lahti, P.J. Operational Quantum Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; Volume 31. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [Google Scholar] [CrossRef]
- Gelfand, I.; Neumark, M. On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S. 1943, 12, 197–217. [Google Scholar]
- Peres, A. Neumark’s theorem and quantum inseparability. Found. Phys. 1990, 20, 1441–1453. [Google Scholar] [CrossRef]
- Peres, A. Quantum Theory: Concepts and Methods; Springer: Berlin/Heidelberg, Germany, 1997; Volume 72. [Google Scholar]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 844–849. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Busch, P. Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys. 1985, 24, 63–92. [Google Scholar] [CrossRef]
- Busch, P. Unsharp reality and joint measurements for spin observables. Phys. Rev. D 1986, 33, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Feng, T.; Yao, D.; Shi, H.; Chen, J.; Zhou, X. Passive and active nonlocality sharing for a two-qubit system via weak measurements. Phys. Rev. A 2019, 100, 052121. [Google Scholar] [CrossRef]
- Bera, A.; Mal, S.; De, A.S.; Sen, U. Witnessing bipartite entanglement sequentially by multiple observers. Phys. Rev. A 2018, 98, 062304. [Google Scholar] [CrossRef]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef]
- Woronowicz, S. Nonextendible positive maps. Commun. Math. Phys. 1976, 51, 243–282. [Google Scholar] [CrossRef]
- Lewenstein, M.; Kraus, B.; Cirac, J.I.; Horodecki, P. Optimization of entanglement witnesses. Phys. Rev. A 2000, 62, 052310. [Google Scholar] [CrossRef]
- Bruß, D.; Cirac, J.I.; Horodecki, P.; Hulpke, F.; Kraus, B.; Lewenstein, M.; Sanpera, A. Reflections upon separability and distillability. J. Mod. Opt. 2002, 49, 1399–1418. [Google Scholar] [CrossRef]
- Gühne, O.; Reimpell, M.; Werner, R.F. Estimating Entanglement Measures in Experiments. Phys. Rev. Lett. 2007, 98, 110502. [Google Scholar] [CrossRef] [PubMed]
- Gühne, O.; Hyllus, P.; Bruß, D.; Ekert, A.; Lewenstein, M.; Macchiavello, C.; Sanpera, A. Experimental detection of entanglement via witness operators and local measurements. J. Mod. Opt. 2003, 50, 1079–1102. [Google Scholar] [CrossRef]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277–4281. [Google Scholar] [CrossRef]
- Sasmal, S.; Das, D.; Mal, S.; Majumdar, A.S. Steering a single system sequentially by multiple observers. Phys. Rev. A 2018, 98, 012305. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; Foster, C.J.; Fuwa, M.; Wiseman, H.M. Analog of the Clauser–Horne–Shimony–Holt inequality for steering. JOSA B 2015, 32, A74–A81. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; Jones, S.J.; Wiseman, H.M.; Reid, M.D. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 2009, 80, 032112. [Google Scholar] [CrossRef]
- Shenoy, H.A.; Designolle, S.; Hirsch, F.; Silva, R.; Gisin, N.; Brunner, N. Unbounded sequence of observers exhibiting Einstein-Podolsky-Rosen steering. Phys. Rev. A 2019, 99, 022317. [Google Scholar] [CrossRef]
- Lv, Q.Q.; Liang, J.M.; Wang, Z.X.; Fei, S.M. Sharing EPR steering between sequential pairs of observers. J. Phys. A Math. Theor. 2023, 56, 325301. [Google Scholar] [CrossRef]
- Pearle, P.M. Hidden-Variable Example Based upon Data Rejection. Phys. Rev. D 1970, 2, 1418–1425. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Wringing out better Bell inequalities. Ann. Phys. 1990, 202, 22–56. [Google Scholar] [CrossRef]
- Gisin, N. Bell inequality for arbitrary many settings of the analyzers. Phys. Lett. A 1999, 260, 1–3. [Google Scholar] [CrossRef]
- Collins, D.; Gisin, N. A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A Math. Gen. 2004, 37, 1775. [Google Scholar] [CrossRef]
- Deng, D.L.; Zhou, Z.S.; Chen, J.L. Relevant multi-setting tight Bell inequalities for qubits and qutrits. Ann. Phys. 2009, 324, 1996–2003. [Google Scholar] [CrossRef]
- Brunner, N.; Gisin, N. Partial list of bipartite Bell inequalities with four binary settings. Phys. Lett. A 2008, 372, 3162–3167. [Google Scholar] [CrossRef]
- Avis, D.; Imai, H.; Ito, T. On the relationship between convex bodies related to correlation experiments with dichotomic observables. J. Phys. A Math. Gen. 2006, 39, 11283. [Google Scholar] [CrossRef]
- Gisin, N. Bell inequalities: Many questions, a few answers. arXiv 2009, arXiv:quant-ph/0702021. [Google Scholar]
- Hughston, L.P.; Jozsa, R.; Wootters, W.K. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 1993, 183, 14–18. [Google Scholar] [CrossRef]
- Hill, S.A.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Saha, S.; Das, D.; Sasmal, S.; Sarkar, D.; Mukherjee, K.; Roy, A.; Bhattacharya, S.S. Sharing of tripartite nonlocality by multiple observers measuring sequentially at one side. Quantum Inf. Process. 2019, 18, 1–15. [Google Scholar] [CrossRef]
- Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 1990, 65, 1838–1840. [Google Scholar] [CrossRef] [PubMed]
- Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 1987, 35, 3066–3069. [Google Scholar] [CrossRef] [PubMed]
- Mermin, N.D. Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 1990, 65, 3373–3376. [Google Scholar] [CrossRef] [PubMed]
- Bancal, J.D.; Barrett, J.; Gisin, N.; Pironio, S. Definitions of multipartite nonlocality. Phys. Rev. A 2013, 88, 014102. [Google Scholar] [CrossRef]
- Maity, A.G.; Das, D.; Ghosal, A.; Roy, A.; Majumdar, A.S. Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A 2020, 101, 042340. [Google Scholar] [CrossRef]
- Acín, A.; Bruß, D.; Lewenstein, M.; Sanpera, A. Classification of Mixed Three-Qubit States. Phys. Rev. Lett. 2001, 87, 040401. [Google Scholar] [CrossRef] [PubMed]
- Bourennane, M.; Eibl, M.; Kurtsiefer, C.; Gaertner, S.; Weinfurter, H.; Gühne, O.; Hyllus, P.; Bruß, D.; Lewenstein, M.; Sanpera, A. Experimental Detection of Multipartite Entanglement using Witness Operators. Phys. Rev. Lett. 2004, 92, 087902. [Google Scholar] [CrossRef]
- Bruß, D. Characterizing entanglement. J. Math. Phys. 2002, 43, 4237–4251. [Google Scholar] [CrossRef]
- Sørensen, A.S.; Mølmer, K. Entanglement and Extreme Spin Squeezing. Phys. Rev. Lett. 2001, 86, 4431–4434. [Google Scholar] [CrossRef]
- Tóth, G. Multipartite entanglement and high-precision metrology. Phys. Rev. A 2012, 85, 022322. [Google Scholar] [CrossRef]
- Seevinck, M.; Uffink, J. Partial separability and entanglement criteria for multiqubit quantum states. Phys. Rev. A 2008, 78, 032101. [Google Scholar] [CrossRef]
- Lu, C.Y.; Zhou, X.Q.; Gühne, O.; Gao, W.B.; Zhang, J.; Yuan, Z.S.; Goebel, A.; Yang, T.; Pan, J.W. Experimental entanglement of six photons in graph states. Nat. Phys. 2007, 3, 91–95. [Google Scholar] [CrossRef]
- Roos, C.F.; Riebe, M.; Haffner, H.; Hansel, W.; Benhelm, J.; Lancaster, G.P.; Becher, C.; Schmidt-Kaler, F.; Blatt, R. Control and measurement of three-qubit entangled states. Science 2004, 304, 1478–1480. [Google Scholar] [CrossRef]
- Cabello, A. Experimentally Testable State-Independent Quantum Contextuality. Phys. Rev. Lett. 2008, 101, 210401. [Google Scholar] [CrossRef]
- Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Kumari, A.; Pan, A.K. Sharing nonlocality and nontrivial preparation contextuality using the same family of Bell expressions. Phys. Rev. A 2019, 100, 062130. [Google Scholar] [CrossRef]
- Brown, P.J.; Colbeck, R. Arbitrarily Many Independent Observers Can Share the Nonlocality of a Single Maximally Entangled Qubit Pair. Phys. Rev. Lett. 2020, 125, 090401. [Google Scholar] [CrossRef]
- Zhang, T.; Fei, S.M. Sharing quantum nonlocality and genuine nonlocality with independent observables. Phys. Rev. A 2021, 103, 032216. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, L.; Baker, T.J.; Hall, M.J.W. Limitations on sharing Bell nonlocality between sequential pairs of observers. Phys. Rev. A 2021, 104, L060201. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, L.; Baker, T.J.; Hall, M.J.W. Recycling qubits for the generation of Bell nonlocality between independent sequential observers. Phys. Rev. A 2022, 105, 022411. [Google Scholar] [CrossRef]
- Srivastava, C.; Pandit, M.; Sen, U. Sequential detection of genuine multipartite entanglement is unbounded for entire hierarchy of number of qubits recycled. arXiv 2022, arXiv:2208.08435. [Google Scholar]
- Pandit, M.; Srivastava, C.; Sen, U. Recycled entanglement detection by arbitrarily many sequential and independent pairs of observers. Phys. Rev. A 2022, 106, 032419. [Google Scholar] [CrossRef]
- Srivastava, C.; Pandit, M.; Sen, U. Entanglement witnessing by arbitrarily many independent observers recycling a local quantum shared state. Phys. Rev. A 2022, 105, 062413. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Curchod, F.J.; Johansson, M.; Augusiak, R.; Hoban, M.J.; Wittek, P.; Acín, A. Unbounded randomness certification using sequences of measurements. Phys. Rev. A 2017, 95, 020102. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Presti, P.L.; Perinotti, P. Classical randomness in quantum measurements. J. Phys. A Math. Gen. 2005, 38, 5979. [Google Scholar] [CrossRef]
- Acín, A.; Pironio, S.; Vértesi, T.; Wittek, P. Optimal randomness certification from one entangled bit. Phys. Rev. A 2016, 93, 040102. [Google Scholar] [CrossRef]
- Coyle, B.; Hoban, M.J.; Kashefi, E. One-sided device-independent certification of unbounded random numbers. arXiv 2018, arXiv:1806.10565. [Google Scholar] [CrossRef]
- Bowles, J.; Baccari, F.; Salavrakos, A. Bounding sets of sequential quantum correlations and device-independent randomness certification. Quantum 2020, 4, 344. [Google Scholar] [CrossRef]
- Navascués, M.; Pironio, S.; Acín, A. Bounding the Set of Quantum Correlations. Phys. Rev. Lett. 2007, 98, 010401. [Google Scholar] [CrossRef]
- Navascués, M.; Pironio, S.; Acín, A. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 2008, 10, 073013. [Google Scholar] [CrossRef]
- Schiavon, M.; Calderaro, L.; Pittaluga, M.; Vallone, G.; Villoresi, P. Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2017, 2, 015010. [Google Scholar] [CrossRef]
- Kim, T.; Fiorentino, M.; Wong, F.N.C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 2006, 73, 012316. [Google Scholar] [CrossRef]
- Hu, M.J.; Zhou, Z.Y.; Hu, X.M.; Li, C.F.; Guo, G.C.; Zhang, Y.S. Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. npj Quantum Inf. 2018, 4, 63. [Google Scholar] [CrossRef]
- Choi, Y.H.; Hong, S.; Pramanik, T.; Lim, H.T.; Kim, Y.S.; Jung, H.; Han, S.W.; Moon, S.; Cho, Y.W. Demonstration of simultaneous quantum steering by multiple observers via sequential weak measurements. Optica 2020, 7, 675–679. [Google Scholar] [CrossRef]
- Kwon, O.; Cho, Y.W.; Kim, Y.H. Single-mode coupling efficiencies of type-II spontaneous parametric down-conversion: Collinear, noncollinear, and beamlike phase matching. Phys. Rev. A 2008, 78, 053825. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, M.J.; Li, C.F.; Guo, G.C.; Zhang, Y.S. Einstein-Podolsky-Rosen steering in two-sided sequential measurements with one entangled pair. Phys. Rev. A 2022, 105, 032211. [Google Scholar] [CrossRef]
- Anwer, H.; Wilson, N.; Silva, R.; Muhammad, S.; Tavakoli, A.; Bourennane, M. Noise-robust preparation contextuality shared between any number of observers via unsharp measurements. Quantum 2021, 5, 551. [Google Scholar] [CrossRef]
- Feng, T.; Ren, C.; Tian, Y.; Luo, M.; Shi, H.; Chen, J.; Zhou, X. Observation of nonlocality sharing via not-so-weak measurements. Phys. Rev. A 2020, 102, 032220. [Google Scholar] [CrossRef]
- Foletto, G.; Calderaro, L.; Tavakoli, A.; Schiavon, M.; Picciariello, F.; Cabello, A.; Villoresi, P.; Vallone, G. Experimental Certification of Sustained Entanglement and Nonlocality after Sequential Measurements. Phys. Rev. Appl. 2020, 13, 044008. [Google Scholar] [CrossRef]
- Tóth, G.; Gühne, O. Detecting Genuine Multipartite Entanglement with Two Local Measurements. Phys. Rev. Lett. 2005, 94, 060501. [Google Scholar] [CrossRef]
- Foletto, G.; Padovan, M.; Avesani, M.; Tebyanian, H.; Villoresi, P.; Vallone, G. Experimental test of sequential weak measurements for certified quantum randomness extraction. Phys. Rev. A 2021, 103, 062206. [Google Scholar] [CrossRef]
- Zhong, H.S.; Li, Y.; Li, W.; Peng, L.C.; Su, Z.E.; Hu, Y.; He, Y.M.; Ding, X.; Zhang, W.; Li, H.; et al. 12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. Phys. Rev. Lett. 2018, 121, 250505. [Google Scholar] [CrossRef]
- Zu, C.; Wang, Y.X.; Deng, D.L.; Chang, X.Y.; Liu, K.; Hou, P.Y.; Yang, H.X.; Duan, L.M. State-Independent Experimental Test of Quantum Contextuality in an Indivisible System. Phys. Rev. Lett. 2012, 109, 150401. [Google Scholar] [CrossRef]
- Kwon, O.; Park, K.K.; Ra, Y.S.; Kim, Y.S.; Kim, Y.H. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser. Opt. Express 2013, 21, 25492–25500. [Google Scholar] [CrossRef]
- Steffinlongo, A.; Tavakoli, A. Projective Measurements Are Sufficient for Recycling Nonlocality. Phys. Rev. Lett. 2022, 129, 230402. [Google Scholar] [CrossRef]
- Xiao, Y.; Rong, Y.X.; Han, X.H.; Wang, S.; Fan, X.; Li, W.C.; Gu, Y.J. Experimental recycling of Bell nonlocality with projective measurements. arXiv 2022, arXiv:2212.03815. [Google Scholar] [CrossRef]
- Mao, Y.L.; Li, Z.D.; Steffinlongo, A.; Guo, B.; Liu, B.; Xu, S.; Gisin, N.; Tavakoli, A.; Fan, J. Recycling nonlocality in a quantum network. arXiv 2022, arXiv:2202.04840. [Google Scholar] [CrossRef]
- Hou, W.; Liu, X.; Ren, C. Network nonlocality sharing via weak measurements in the extended bilocal scenario. Phys. Rev. A 2022, 105, 042436. [Google Scholar] [CrossRef]
- Wang, J.H.; Wang, Y.J.; Wang, L.J.; Chen, Q. Network nonlocality sharing via weak measurements in the generalized star network configuration. Phys. Rev. A 2022, 106, 052412. [Google Scholar] [CrossRef]
- Roy, S.; Bera, A.; Mal, S.; De, A.S.; Sen, U. Recycling the resource: Sequential usage of shared state in quantum teleportation with weak measurements. Phys. Lett. A 2021, 392, 127143. [Google Scholar] [CrossRef]
- Das, S.; Halder, P.; Banerjee, R.; De, A.S. Sequential reattempt of telecloning. Phys. Rev. A 2023, 107, 042414. [Google Scholar] [CrossRef]
Step k | Previous Outcome | Strength (Rad) | (Model) (Bits) | (Experiment) (Bits) |
---|---|---|---|---|
1 | Not applicable | 0.4 | 0.165 | 0.13 ± 0.002 |
2 | 0 | Projective | 0.263 | 0.38 ± 0.04 |
2 | 1 | Projective | 0.263 | 0.13 ± 0.02 |
1 | Not applicable | 0.47 | 0.085 | 0.057 ± 0.002 |
2 | 0 | 0.1 | 0.303 | 0.32 ± 0.02 |
2 | 1 | 0.1 | 0.303 | 0.25 ± 0.02 |
1 | Not applicable | 0.52 | 0.035 | 0.005 ± 0.001 |
2 | 0 | 0.1 | 0.369 | 0.38 ± 0.02 |
2 | 1 | 0.1 | 0.369 | 0.33 ± 0.01 |
Publication Time | Quantum Correlation Scenarios | Observer Type | One- Sided | Multi- Sided | Measurement Settings | Upper Bound Analysis | Ref |
---|---|---|---|---|---|---|---|
2015 | Bell nonlocality | Alice– Bob | ✓ | Equal sharpness | Bell-CHSH inequality: 2 Bobs (unbiased input)/no limit (biased input) | [34] | |
2016 | Bell nonlocality | Alice– Bob | ✓ | Equal sharpness | Bell-CHSH inequality: 2 Bobs (unbiased input) | [41] | |
2018 | Entangle- ment | Alice– Bob | ✓ | Equal sharpness | Entanglement witness: 12 Bobs | [54] | |
2018 | EPR steering | Alice– Bob | ✓ | Equal sharpness | 2-settings CFFW inequality: 2 Bobs n-settings CJWR inequality: n Bobs | [62] | |
2019 | EPR steering | Alice– Bob | ✓ | Equal sharpness | An isotropic entangled state of local dimension d: Bobs | [65] | |
2019 | Bell nonlocality | Alice– Bob | ✓ | Equal sharpness | n-settings local realist inequality: 2 Bobs (unbiased input) | [35] | |
2019 | Standard/ genuine nonlocality | Alice– Bob– Charlie | ✓ | Equal sharpness | Mermin inequality: 6 Charlies Svetlichny inequality: 2 Charlies (unbiased input) | [77] | |
2019 | Preparation contextuality | Alice– Bob | ✓ | Equal sharpness | Nontrivial preparation noncontextual inequalities: unbounded Bobs | [93] | |
2020 | Genuine Entangle- ment | Alice– Bob– Charlie | ✓ | Equal sharpness | Tripartite entanglement witness: 12 Charlies | [82] | |
2020 | Bell nonlocality | Alice– Bob | ✓ | Unequal sharpness | Bell-CHSH inequality: unbounded Bobs | [94] | |
2021 | Genuine nonlocality | Alice– Bob– Charlie | ✓ | Unequal sharpness | Svetlichny inequality: 2 Charlies | [95] | |
2021 | Bell nonlocality | Alice– Bob | ✓ | Unequal sharpness | Bell-CHSH inequality: not applicable (unbiased input) | [96] | |
2022 | Genuine Entangle- ment | N-qubit pair | ✓ | Unequal sharpness | Genuine multipartite entanglement witnesses: an unboundedly long sequence | [98] | |
2022 | Entangle- ment | Alice– Bob | ✓ | Unequal sharpness | Entanglement witness: an unboundedly long sequence | [99] | |
2023 | EPR steering | Alice– Bob | ✓ | Unequal sharpness | 3-settings CJWR inequality: unbounded Alices and Bobs | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhan, L.; Li, L.; Bao, S.; Tao, Z.; Ying, J. Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments. Photonics 2023, 10, 1314. https://doi.org/10.3390/photonics10121314
Huang X, Zhan L, Li L, Bao S, Tao Z, Ying J. Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments. Photonics. 2023; 10(12):1314. https://doi.org/10.3390/photonics10121314
Chicago/Turabian StyleHuang, Xianzhi, Liyao Zhan, Liang Li, Suhui Bao, Zipeng Tao, and Jiayu Ying. 2023. "Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments" Photonics 10, no. 12: 1314. https://doi.org/10.3390/photonics10121314
APA StyleHuang, X., Zhan, L., Li, L., Bao, S., Tao, Z., & Ying, J. (2023). Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments. Photonics, 10(12), 1314. https://doi.org/10.3390/photonics10121314