Special Issue on Photonic State Tomography: Methods and Applications
Conflicts of Interest
References
- Wang, H.; He, K. Quantum Tomography of Two-Qutrit Werner States. Photonics 2022, 9, 741. [Google Scholar] [CrossRef]
- Czerwinski, A. Entanglement Characterization by Single-Photon Counting with Random Noise. Quantum Inf. Comput. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Wang, H.; He, K.; Hao, Y.; Yang, S. Quantum tomography with Gaussian noise. Quantum Inf. Comput. 2022, 22, 1144–1157. [Google Scholar] [CrossRef]
- Kim, J.L.; Kollias, G.; Kalev, A.; Wei, K.X.; Kyrillidis, A. Fast Quantum State Reconstruction via Accelerated Non-Convex Programming. Photonics 2023, 10, 116. [Google Scholar] [CrossRef]
- Chen, H.; Han, T.; Chen, M.; Ren, J.; Cai, X.; Meng, X.; Peng, Y. Quantum State Tomography in Nonequilibrium Environments. Photonics 2023, 10, 134. [Google Scholar] [CrossRef]
- Czerwinski, A. Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond. Symmetry 2022, 14, 1752. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, Y. Decoherence induced by non-Markovian noise in a nonequilibrium environment. Phys. Rev. A 2016, 94, 042110. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, Y. Non-Markovian decoherence dynamics in nonequilibrium environments. J. Chem. Phys. 2018, 149, 094107. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.M.; Eisert, J.; Cubitt, T.S.; Cirac, J.I. Assessing Non-Markovian Quantum Dynamics. Phys. Rev. Lett. 2008, 101, 150402. [Google Scholar] [CrossRef] [PubMed]
- Czerwinski, A.; Czerwinska, K. Statistical Analysis of the Photon Loss in Fiber-Optic Communication. Photonics 2022, 9, 568. [Google Scholar] [CrossRef]
- Czerwinski, A.; Szlachetka, J. Efficiency of photonic state tomography affected by fiber attenuation. Phys. Rev. A 2022, 105, 062437. [Google Scholar] [CrossRef]
- Hadipour, M.; Haseli, S.; Dolatkhah, H.; Haddadi, S.; Czerwinski, A. Quantum Speed Limit for a Moving Qubit inside a Leaky Cavity. Photonics 2022, 9, 875. [Google Scholar] [CrossRef]
- Taddei, M.M.; Escher, B.M.; Davidovich, L.; De Matos Filho, R.L. Quantum speed limit for physical processes. Phys. Rev. Lett. 2013, 110, 050402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Han, W.; Xia, Y.J.; Cao, J.P.; Fan, H. Quantum speed limit for arbitrary initial states. Sci. Rep. 2014, 4, 4890. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-H.; Wu, L.-A.; Wang, Z.-M. Optimally Controlled Non-Adiabatic Quantum State Transmission in the Presence of Quantum Noise. Photonics 2023, 10, 274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwinski, A. Special Issue on Photonic State Tomography: Methods and Applications. Photonics 2023, 10, 1370. https://doi.org/10.3390/photonics10121370
Czerwinski A. Special Issue on Photonic State Tomography: Methods and Applications. Photonics. 2023; 10(12):1370. https://doi.org/10.3390/photonics10121370
Chicago/Turabian StyleCzerwinski, Artur. 2023. "Special Issue on Photonic State Tomography: Methods and Applications" Photonics 10, no. 12: 1370. https://doi.org/10.3390/photonics10121370
APA StyleCzerwinski, A. (2023). Special Issue on Photonic State Tomography: Methods and Applications. Photonics, 10(12), 1370. https://doi.org/10.3390/photonics10121370