Mode-Independent Optical Switch Based on Graphene-Polymer Hybrid Waveguides
Abstract
:1. Introduction
2. Device Structure
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 2014, 22, 29321–29330. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.X.; Chen, S.T.; Shi, Y.C.; Dai, D.X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 2014, 22, 12799–12807. [Google Scholar] [CrossRef]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.H.; Xu, J.; Da Ros, F.; Huang, B.; Ou, H.Y.; Peucheret, C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 2013, 21, 10376–10382. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.N.; Shi, Y.C. Metamaterial-based maxwell’s fisheye lens for multimode waveguide crossing. Laser Photonics Rev. 2018, 12, 1800094. [Google Scholar] [CrossRef]
- Luo, Y.C.; Yu, Y.; Ye, M.Y.; Sun, C.L.; Zhang, X.L. Integrated dual-mode 3dB power coupler based on tapered directional coupler. Sci. Rep. 2016, 6, 23516. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.W.; Ding, Y.H.; Frandsen, L.H. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt. Lett. 2015, 40, 3893–3896. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.X.; Yan, J.L.; He, S.L.; Liu, L. Broadband optical switch for multiple spatial modes based on a silicon densely packed waveguide array. Opt. Lett. 2019, 44, 907–910. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, T.; Zhang, L.; Ding, J.F.; Fu, X.; Yang, L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt. Express 2017, 25, 20698–20707. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Priti, R.B.; Liboiron-Ladouceur, O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica 2017, 4, 1098–1102. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.H.; Zhu, Q.M.; Yuan, Y.; Su, Y.K. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J. Lightw. Technol. 2020, 38, 215–225. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, T.; Jia, H.; Yang, S.L.; Ding, J.F.; Fu, X.; Zhang, L. General architectures for on-chip optical space and mode switching. Optica 2018, 5, 180–187. [Google Scholar] [CrossRef]
- Stern, B.; Zhu, X.L.; Chen, C.P.; Tzuang, L.D.; Cardenas, J.; Bergman, K.; Lipson, M. On-chip mode-division multiplexing switch. Optica 2015, 2, 530–535. [Google Scholar] [CrossRef]
- Kumar, S.; Raghuwanshi, S.K.; Kumar, A. Implementation of optical switches using Mach-Zehnder interferometer. Opt. Eng. 2013, 52, 097106. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Di Benedetto, A.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- DasMahapatra, P.; Stabile, R.; Rohit, A.; Williams, K.A. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quant. 2014, 20, 5900410. [Google Scholar] [CrossRef]
- Lin, B.Z.; Sun, S.J.; Sun, X.Q.; Lian, T.H.; Zhu, M.; Che, Y.H.; Wang, X.B.; Zhang, D.M. Dual-mode 2 × 2 thermo-optic switch based on polymer waveguide Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 2022, 34, 1317–1320. [Google Scholar] [CrossRef]
- Sun, Z.P.; Popa, D.; Hasan, T.; Torrisi, F.; Wang, F.Q.; EKelleher, E.J.R.; Travers, J.C.; Nicolosi, V.; Ferrari, A.C. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 2010, 3, 653–660. [Google Scholar] [CrossRef]
- Ye, S.W.; Wang, Z.S.; Tang, L.F.; Zhang, Y.L.; Lu, R.G.; Liu, Y. Electro-absorption optical modulator using dual-graphene-ongraphene configuration. Opt. Express 2014, 22, 26173–26180. [Google Scholar] [CrossRef]
- Kim, J.T.; Choi, C.G. Graphene-based polymer waveguide polarizer. Opt. Express 2012, 20, 3556–3562. [Google Scholar] [CrossRef]
- Guo, J.S.; Li, J.; Liu, C.Y.; Yin, Y.L.; Wang, W.H.; Ni, Z.H.; Fu, Z.L.; Yu, H.; Xu, Y.; Shi, Y.C.; et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 µm. Light Sci. Appl. 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Guo, R.X.; Wan, D.; Sharma, T.; Zhang, L.; Liu, T.G.; Cheng, Z.Z. Design of a graphene-enabled dual-mode kerr frequency comb. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 5100107. [Google Scholar] [CrossRef]
- Xing, Z.K.; Li, C.; Han, Y.D.; Hu, H.F.; Cheng, Z.Z.; Wang, J.Q.; Liu, T.G. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing. Opt. Express 2019, 27, 19188–19195. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Jin, W.; Chang, Z.S.; Kin, S.C. Buried graphene electrode heater for a polymer waveguide thermo-optic device. Opt. Lett. 2019, 44, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Z.; Huang, Q.D.; Kin, S.C. Low-power all-optical switch based on a graphene-buried polymer waveguide Mach-Zehnder interferometer. Opt. Express 2022, 30, 6786–6797. [Google Scholar] [CrossRef] [PubMed]
- Tavana, S.; Bahadori-Haghighi, S.; Sheikhi, M.H. High-performance electro-optical switch using an anisotropic graphene-based one-dimensional photonic crystal. Opt. Express 2022, 30, 9269–9283. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, Q.Y.; Zhang, Y.; Yan, S.Y.; Wang, C.H. Tunable graphene-based metasurface for an ultra-low sidelobe terahertz phased array antenna. Opt. Express 2021, 29, 26865–26875. [Google Scholar] [CrossRef]
- Lian, T.H.; Yang, K.D.; Wang, X.B.; Jiang, M.H.; Sun, S.J.; Niu, D.H.; Zhang, D.M. Electro-absorption optical modulator based on graphene-buried polymer waveguides. IEEE Photonics J. 2022, 12, 6601610. [Google Scholar] [CrossRef]
- Lian, T.H.; Yang, K.D.; Sun, S.J.; Zhu, M.; Yue, J.; Lin, B.Z.; Sun, X.Q.; Wang, X.B.; Zhang, D.M. Polarization-independent electro-absorption optical modulator based on trapezoid polymer-graphene waveguide. Opt. Laser Technol. 2022, 149, 107815. [Google Scholar] [CrossRef]
- Lian, T.H.; Zhu, M.; Sun, S.J.; Sun, X.Q.; Che, Y.H.; Lin, B.Z.; Wang, X.B.; Zhang, D.M. Mode-selective modulator and switch based on graphene-polymer hybrid waveguides. Opt. Express 2022, 30, 23746–23755. [Google Scholar] [CrossRef]
- Chang, Z.S.; Ching, K.S. Ultra-broadband mode filters based on graphene-embedded waveguides. Opt. Lett. 2017, 42, 3868–3871. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Zhang, X.Y.; Chen, Y.Z.; Geng, Y.F.; Du, Y.; Li, X.J. Design of a graphene-based silicon nitride multimode waveguide-integrated electro-optic modulator. Opt. Commun. 2021, 481, 126531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, T.; Xie, Y.; Yu, Q.; Sun, S.; Sun, X.; Wang, X.; Zhang, D. Mode-Independent Optical Switch Based on Graphene-Polymer Hybrid Waveguides. Photonics 2023, 10, 1372. https://doi.org/10.3390/photonics10121372
Lian T, Xie Y, Yu Q, Sun S, Sun X, Wang X, Zhang D. Mode-Independent Optical Switch Based on Graphene-Polymer Hybrid Waveguides. Photonics. 2023; 10(12):1372. https://doi.org/10.3390/photonics10121372
Chicago/Turabian StyleLian, Tianhang, Yuhang Xie, Qidong Yu, Shijie Sun, Xiaoqiang Sun, Xibin Wang, and Daming Zhang. 2023. "Mode-Independent Optical Switch Based on Graphene-Polymer Hybrid Waveguides" Photonics 10, no. 12: 1372. https://doi.org/10.3390/photonics10121372
APA StyleLian, T., Xie, Y., Yu, Q., Sun, S., Sun, X., Wang, X., & Zhang, D. (2023). Mode-Independent Optical Switch Based on Graphene-Polymer Hybrid Waveguides. Photonics, 10(12), 1372. https://doi.org/10.3390/photonics10121372