CoolMomentum-SPGD Algorithm for Wavefront Sensor-Less Adaptive Optics Systems
Abstract
:1. Introduction
2. Materials and Methods
Algorithm 1 CoolMomentum-SPGD |
|
3. Results
4. Discussion
- SPGD vs. others. The adjacent step size varies abruptly in the iterative procedure of SPGD (Figure 7a), whereas it shows much more consistency between adjacent steps for the other three algorithms. The consistency of step size is essentially due to taking the momentum of inertia into account, as in the case of Momentum-SPGD, Adam-SPGD, and CoolMomentum-SPGD.
- CoolMomentum-SPGD vs. Momentum-SPGD. For Momentum-SPGD, the step size is generally even in the whole iterative procedure (Figure 7b). For CoolMomentum-SPGD, the step size behaves in a bold manner in the early stage, while it descends gradually into a negligible magnitude in the later stage (Figure 7d). This dramatic decline in step size originates from the “cooling” operation of the inertial momentum. It is worth comparing the crucial iterative schemes of Momentum-SPGD and CoolMomentum-SPGD.Momentum-SPGD:CoolMomentum-SPGD:The expressions of Momentum-SPGD and CoolMomentum-SPGD are quite similar. The update of control voltage consists of two parts, the inertial momentum of the past updates and the gradient scaled by a learning rate. Thus, either of the algorithms has two parameters, a momentum coefficient and a learning rate. However, the momentum coefficient and learning rate for Momentum-SPGD are both fixed, while those for CoolMomentum-SPGD are variable through the iterative procedure. Figure 8 illustrates and the corresponding (according to Equation (8)) in a typical iterative procedure of CoolMomentum-SPGD. The “cooling” of the momentum is prominent in Figure 8a. It is this cooling momentum that leads to the decaying step size in Figure 7d, as well as the superiority in convergence speed. It is worth noting that and are determined by their initial values and , respectively. Therefore, two predefined parameters are needed to implement CoolMomentum-SPGD, which is the same as Momentum-SPGD.
- CoolMomentum-SPGD vs. Adam-SPGD. Both of the algorithms take into account the inertial momentum and possess adaptive learning rates, by which remarkable performance is achieved. Adam-SPGD’s adaptive learning rate originates from the division by cumulative squared gradients [32]. In contrast, CoolMomentum-SPGD’s adaptive learning rate stems from the cooling momentum (Equation (8)). According to the above numerical simulations, CoolMomentum-SPGD’s scheme achieves better convergence speed than Adam-SPGD’s in controlling wavefront correctors, despite the fact that fewer tunable parameters are required.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyson, R.K.; Frazier, B.W. Principles of Adaptive Optics; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Madec, P.Y. Overview of deformable mirror technologies for adaptive optics and astronomy. In Adaptive Optics Systems III; SPIE: Bellingham, WA, USA, 2012; Volume 8447, pp. 22–39. [Google Scholar]
- Martínez, N.; Ramos, L.F.R.; Sodnik, Z. Simulating the performance of adaptive optics techniques on FSO communications through the atmosphere. In Laser Communication and Propagation through the Atmosphere and Oceans VI; SPIE: Bellingham, WA, USA, 2017; Volume 10408, pp. 49–57. [Google Scholar]
- Booth, M.J.; Débarre, D.; Jesacher, A. Adaptive Optics for Biomedical Microscopy. Opt. Photon. News 2012, 23, 22–29. [Google Scholar] [CrossRef]
- Godara, P.; Dubis, A.M.; Roorda, A.; Duncan, J.L.; Carroll, J. Adaptive optics retinal imaging: Emerging clinical applications. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2010, 87, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salter, P.S.; Booth, M.J. Adaptive optics in laser processing. Light Sci. Appl. 2019, 8, 110. [Google Scholar] [PubMed] [Green Version]
- Habets, M.; Scholten, J.; Weiland, S.; Coene, W. Multi-mirror adaptive optics for control of thermally induced aberrations in extreme ultraviolet lithography. In Extreme Ultraviolet (EUV) Lithography VII; SPIE: Bellingham, WA, USA, 2016; Volume 9776, pp. 662–673. [Google Scholar]
- He, C.; Shen, Y.; Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 2022, 11, 205. [Google Scholar] [CrossRef]
- Grunwald, R.; Jurke, M.; Bock, M.; Liebmann, M.; Bruno, B.P.; Gowda, H.; Wallrabe, U. High-Flexibility Control of Structured Light with Combined Adaptive Optical Systems. Photonics 2022, 9, 42. [Google Scholar] [CrossRef]
- Primot, J. Theoretical description of Shack–Hartmann wave-front sensor. Opt. Commun. 2003, 222, 81–92. [Google Scholar] [CrossRef]
- Antonello, J.; van Werkhoven, T.; Verhaegen, M.; Truong, H.H.; Keller, C.U.; Gerritsen, H.C. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy. J. Opt. Soc. Am. A 2014, 31, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Soloviev, O.; Verhaegen, M. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects. Opt. Express 2015, 23, 24587–24601. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Carhart, G.W.; Ricklin, J.C. Adaptive phase-distortion correction based on parallel gradient-descent optimization. Opt. Lett. 1997, 22, 907. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Gong, C.; Jiang, W. Restoration of turbulence-degraded extended object using the stochastic parallel gradient descent algorithm: Numerical simulation. Opt. Express 2009, 17, 3052–3062. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Sivokon, V.P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A 1998, 15, 2745–2758. [Google Scholar] [CrossRef]
- Carhart, G.W.; Vorontsov, M.A.; Cohen, M.H.; Cauwenberghs, G.; Edwards, R.T. Adaptive wavefront correction using a VLSI implementation of the parallel gradient descent algorithm. In High-Resolution Wavefront Control: Methods, Devices, and Applications; Gonglewski, J.D., Vorontsov, M.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 1999; Volume 3760, pp. 61–66. [Google Scholar] [CrossRef]
- Weyrauch, T.; Vorontsov, M.A.; Bifano, T.G.; Giles, M.K. Adaptive optics system with micromachined mirror array and stochastic gradient descent controller. In High-Resolution Wavefront Control: Methods, Devices, and Applications II; Gonglewski, J.D., Vorontsov, M.A., Gruneisen, M.T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2000; Volume 4124, pp. 178–188. [Google Scholar] [CrossRef]
- Yang, G.; Liu, L.; Jiang, Z.; Guo, J.; Wang, T. Incoherent beam combining based on the momentum SPGD algorithm. Opt. Laser Technol. 2018, 101, 372–378. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Che, D.; Guo, J.; Wang, T. Coherent beam combining based on the SPGD algorithm with a momentum term. Optik 2020, 202, 163650. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Che, D.; Wang, T. Numerical and experimental study on coherent beam combining using an improved stochastic parallel gradient descent algorithm. Laser Phys. 2020, 30, 085102. [Google Scholar] [CrossRef]
- Che, D.; Li, Y.; Wu, Y.; Song, J.; Wang, T. Theory of AdmSPGD algorithm in fiber laser coherent synthesis. Opt. Commun. 2021, 492, 126953. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, X.; Li, X.; Yang, H.; Gong, C. SPGD algorithm optimization based on Adam optimizer. In AOPC 2020: Optical Sensing and Imaging Technology; Luo, X., Jiang, Y., Lu, J., Liu, D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11567, p. 115672S. [Google Scholar] [CrossRef]
- Hu, Q.; Zhen, L.; Mao, Y.; Zhu, S.; Zhou, X.; Zhou, G. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling. Opt. Express 2020, 28, 13141–13154. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Yang, L.; Zhang, H. Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems. Photonics 2022, 9, 77. [Google Scholar] [CrossRef]
- Zhao, H.; An, J.; Yu, M.; Lv, D.; Kuang, K.; Zhang, T. Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm. Appl. Opt. 2021, 60, 7177–7185. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Guo, Y.; Cao, J.; Liu, W.; Yang, L. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system. Opt. Express 2022, 30, 7477. [Google Scholar] [CrossRef]
- Wu, J.; Hu, C.; Liu, R.; Wu, S.; Cao, J.; Cheng, Z.; Yu, B.; Zhang, L. Adam SPGD algorithm in freeform surface in-process interferometry. Opt. Express 2022, 30, 32528–32539. [Google Scholar] [CrossRef]
- Borysenko, O.; Byshkin, M. CoolMomentum: A method for stochastic optimization by Langevin dynamics with simulated annealing. Sci. Rep. 2021, 11, 10705. [Google Scholar] [CrossRef] [PubMed]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
- Assémat, F.; Wilson, R.W.; Gendron, E. Method for simulating infinitely long and non stationary phase screens with optimized memory storage. Opt. Express 2006, 14, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Liang, Y.; Xu, J.; Mao, H. A new performance metric on sensorless adaptive optics imaging system. Optik 2016, 127, 222–226. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Luo, Y.; Yang, H.; Su, H.; Liu, J. CoolMomentum-SPGD Algorithm for Wavefront Sensor-Less Adaptive Optics Systems. Photonics 2023, 10, 102. https://doi.org/10.3390/photonics10020102
Zhang Z, Luo Y, Yang H, Su H, Liu J. CoolMomentum-SPGD Algorithm for Wavefront Sensor-Less Adaptive Optics Systems. Photonics. 2023; 10(2):102. https://doi.org/10.3390/photonics10020102
Chicago/Turabian StyleZhang, Zhiguang, Yuxiang Luo, Huizhen Yang, Hang Su, and Jinlong Liu. 2023. "CoolMomentum-SPGD Algorithm for Wavefront Sensor-Less Adaptive Optics Systems" Photonics 10, no. 2: 102. https://doi.org/10.3390/photonics10020102
APA StyleZhang, Z., Luo, Y., Yang, H., Su, H., & Liu, J. (2023). CoolMomentum-SPGD Algorithm for Wavefront Sensor-Less Adaptive Optics Systems. Photonics, 10(2), 102. https://doi.org/10.3390/photonics10020102