Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface
Abstract
:1. Introduction
2. Structure and Principle
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.-X.; Zhou Fang Wan, Y.-L.; Ning, H.-S. A Survey of Metaverse Technology. Chin. J. Eng. 2022, 44, 744–756. [Google Scholar]
- Geng, J. Structured-Light 3d Surface Imaging: A Tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Ganapathi, V.; Plagemann, C.; Koller, D.; Thrun, S. Real Time Motion Capture Using a Single Time-of-Flight Camera. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 755–762. [Google Scholar]
- Guo, J.; Gu, F.; Ye, Y.; Song, Z. A Speckle 3d Reconstruction System Based on Binocular Endoscope. J. Integr. Technol. 2021, 11, 13–26. [Google Scholar]
- Wu, R.; Zhao, S.; Zhao, Y.; Xie, F. Fringe Projection Profilometry for 3d Measurement of Objects with Different Depth of Fields. Infrared Laser Eng. 2022, 51, 20220088. [Google Scholar]
- Li, Y.; Qian, J.; Feng, S.; Chen, Q.; Zuo, C. Deep-Learning-Enabled Dual-Frequency Composite Fringe Projection Profilometry for Single-Shot Absolute 3d Shape Measurement. Opto-Electron. Adv. 2022, 5, 210021. [Google Scholar] [CrossRef]
- Li, S.; Han, L.; Dong, P.; Sun, W. Algorithm for Measuring the Outer Contour Dimension of Trucks Using Uav Binocular Stereo Vision. Sustainability 2022, 14, 14978. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit Detection and Positioning Technology for a Camellia Oleifera C. Abel Orchard Based on Improved Yolov4-Tiny Model and Binocular Stereo Vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; Taylor, A.; Yu, N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 764, 7901. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Wang, G.; Tang, S.; Xu, H.; Duan, J.; Guo, H.; Guan, F.; Sun, S.; He, Q.; Zhou, L. High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Phys. Rev. Appl. 2017, 8, 034033. [Google Scholar] [CrossRef]
- Hisao, K.; Toyota, H.; Yu, W. Optical Elements with Subwavelength Structured Surfaces. Opt. Rev. 2003, 10, 63–73. [Google Scholar]
- Li, Z.; Zheng, G.; He, P.; Li, S.; Deng, Q.; Zhao, J.; Ai, Y. All-Silicon Nanorod-Based Dammann Gratings. Opt. Lett. 2015, 4285, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, C.; Liu, T.; Da, H.; Feng, R.; Tang, D.; Sun, F.; Ding, W. Simple and Polarization-Independent Dammann Grating Based on All-Dielectric Nanorod Array. J. Opt. 2017, 19, 095103. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; He, T.; Cui, Y.; Tao, J.; Li, Z.; Zheng, G. Metasurface Fan-out Diffractive Optical Elements. J. Appl. Opt. 2019, 40, 306. [Google Scholar]
- Ni, Y.; Chen, S.; Wang, Y.; Tan, Q.; Xiao, S.; Yang, Y. Metasurface for Structured Light Projection over 120 Degrees Field of View. Nano Lett. 2020, 6719, 20–24. [Google Scholar]
- Zheng, X.; Yang, J.; Wang, R.; Lan, T. Visible Light Waveband Dammann Grating Based on All-Dielectric Metasurface. Appl. Opt. 2022, 2184, 61–91. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, W.; Sun, P.; Jin, G.; Li, J.; Xie, Y.; Zhou, C.; Jia, W. Equilateral Triangle Hexagonal Array by Crossing Two One-Dimensional Dammann Gratings with 60°. Microw. Opt. Technol. Lett. 2021, 2297, 63–302. [Google Scholar] [CrossRef]
- Li, Z.; Dai, Q.; Mehmood, M.; Hu, G.; Yanchuk, B.; Tao, J.; Hao, C.; Kim, I.; Jeong, H.; Zheng, G.; et al. Full-Space Cloud of Random Points with a Scrambling Metasurface. Light Sci. Appl. 2018, 7, 63. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces. Adv. Opt. Mater. 2018, 6, 1701181. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Song, X.; Zhao, R.; Jia, D.; Liu, T. Tunable Multi-Wavelength Optofluidic Dammann Grating with Beam Splitting Property. Opt. Express. 2021, 29, 33414–33423. [Google Scholar] [CrossRef]
- Carletti, L.; Zilli, A.; Moia, F.; Toma, A.; Finazzi, M.; De Angelis, C.; Neshev, D.; Celebrano, M. Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic Linbo(3) Metasurface. ACS Photonics 2021, 8, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Bartal, G.; Cohen, O.; Buljan, H.; Fleischer, J.; Manela, O.; Segev, M. Brillouin-Zone Spectroscopy of Nonlinear Photonic Lattices. In Proceedings of the 2005 Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 22–27 May 2005. [Google Scholar]
- Jin, W.; Yan, L.X.; Jiang, D. Area Scalable Optically Induced Photorefractive Photonic Microstructures. Opt. Mater. 2016, 57, 174–178. [Google Scholar] [CrossRef]
- Xavier, J.; Boguslawski, M.; Rose, P.; Joseph, J.; Denz, C. Reconfigurable Optically Induced Quasicrystallographic Three-Dimensional Complex Nonlinear Photonic Lattice Structures. Adv. Mater. 2010, 22, 356–360. [Google Scholar] [CrossRef]
- Xia, S.; Jukic, D.; Wang, N.; Smirnova, D.; Smirnov, L.; Tang, L.; Song, D.; Szameit, A.; Leykam, D.; Xu, J.; et al. Nontrivial Coupling of Light into a Defect: The Interplay of Nonlinearity and Topology. Light Sci. Appl. 2020, 9, 147. [Google Scholar] [CrossRef]
- Sun, K.; Tan, D.; Fang, X.; Xia, X.; Lin, D.; Song, J.; Lin, Y.; Liu, Z.; Gu, M.; Yue, Y.; et al. Three-Dimensional Direct Lithography of Stable Perovskite Nanocrystals in Glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef]
- Shi, Z.; Li, H.; Zhu, X. Necklacelike Solitons Formed by Manipulating Vortex Beams in a Synthetic Structure. J. Opt. Soc. Am. B 2019, 36, 2007–2012. [Google Scholar] [CrossRef]
- Shi, Z.; Preece, D.; Zhang, C.; Xiang, Y.; Chen, Z. Generation and Probing of 3d Helical Lattices with Tunable Helix Pitch and Interface. Opt. Express. 2019, 27, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Zhong, J.; Zhang, H.; Jiang, Y.; Zhao, W. Design and Simulation of a Gst-Based Metasurface with Strong and Switchable Circular Dichroism. Opt. Lett. 2022, 47, 1907–1910. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, W.; Huang, J.; Zhang, H.; Zhao, W. Active Metasurface in the near-Infrared Region by Gating Ultrathin Tin Films. Opt. Lett. 2022, 5072, 47–75. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, M.; Wu, W.; Gao, N.; Yu, X.; Cai, W.; Zhang, X.; Xu, J. Nanoscale Beam Splitters Based on Gradient Metasurfaces. Opt. Lett. 2018, 43, 267–270. [Google Scholar] [CrossRef]
- Gao, B.; Ren, M.; Wu, W.; Hu, H.; Cai, W.; Xu, J. Lithium Niobate Metasurfaces. Laser Photonics Rev. 2019, 13, 1800312. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xie, F.; Chen, W.; Chen, J.; Wu, W.; Liu, W.; Chen, Y.; Cai, W.; Ren, M.; Xu, J. Nonlinear Lithium Niobate Metasurfaces for Second Harmonic Generation. Laser Photonics Rev. 2021, 15, 2000521. [Google Scholar] [CrossRef]
- Fedotova, A.; Younesi, M.; Sautter, J.; Vaskin, A.; Lochner, F.; Steinert, M.; Geiss, R.; Pertsch, T.; Staude, I.; Setzpfandt, F. Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate. Nano Lett. 2020, 20, 8608–8614. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Li, H.; Zhu, S.; Li, T. Second-Harmonic Generation and Manipulation in Lithium Niobate Slab Waveguides by Grating Metasurfaces. Photonics Res. 2020, 8, 1296–1300. [Google Scholar] [CrossRef]
- Bartal, G.; Cohen, O.; Buljan, H.; Fleischer, J.; Manela, O.; Segev, M. Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices. Phys. Rev. Lett. 2005, 1639, 9402. [Google Scholar]
- Wu, X.; Hao, Z.; Bo, F.; Zhang, G.; Xu, J. Advances in Second-Order Nonlinear Optical Effects of Lithium Niobate Micro/Nano Waveguides. Chin. Sci. Bull. 2022, 67, 3915–3927. [Google Scholar]
- Jin, G. Binary Optics. Phys. Eng. 2000, 5, 2–5+16. [Google Scholar]
- Moreno, I.; Davis, J.; Cottrell, D.; Zhang, N.; Yuan, X.C. Encoding Generalized Phase Functions on Dammann Gratings. Opt. Lett. 2010, 1536, 35–38. [Google Scholar] [CrossRef]
- Dammann, H.; Klotz, E. Coherent Optical Generation and Inspection of Two-Dimensional Periodic Structures. Opt. Acta Int. J. Opt. 2010, 24, 505–515. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 1866, 124–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Shi, Z.; Jiang, H.; Deng, Y. Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics 2023, 10, 141. https://doi.org/10.3390/photonics10020141
Wu Y, Shi Z, Jiang H, Deng Y. Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics. 2023; 10(2):141. https://doi.org/10.3390/photonics10020141
Chicago/Turabian StyleWu, Yuning, Zhiwei Shi, Huan Jiang, and Yaohua Deng. 2023. "Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface" Photonics 10, no. 2: 141. https://doi.org/10.3390/photonics10020141
APA StyleWu, Y., Shi, Z., Jiang, H., & Deng, Y. (2023). Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics, 10(2), 141. https://doi.org/10.3390/photonics10020141