Angle-Based Parametrization with Evolutionary Optimization for OESCL-Band Y-Junction Splitters
(This article belongs to the Section Optical Communication and Network)
Abstract
:1. Introduction
2. Angle-Based Parametrization
2.1. Materials and Methods
- (i)
- First, we divide the initial topology into longitudinal equally spaced segments 1 based on [12,35,36], and we set symmetry on the transverse direction of the propagation. We also set the values of = 0.2 m and = 2 m. This allows us to reduce the number of angles to optimize because the angles on the upper edge of the device match those at the bottom edge.
- (ii)
- Second, we modify the dimensions of the current width 2 based on the previous width and angle, as shown in Equation (1). In particular, we can set m for the 1550 nm working window.
- (iii)
- Third, we place a power monitor 3 at one waveguide output to measure the transmittance of the fundamental TE (transverse electric) mode in order to establish the figure of merit.
2.2. Figure of Merit (FOM)
- (i)
- For the band, m and m. The ideal value for the FOM is 10.425 assuming rectangular transmittance windows with a maximum amplitude of 50% on one output waveguide along the SCL band.
- (ii)
- For the band, m and m. The ideal value for the FOM is 26.721 assuming a transmittance of 50% on one output waveguide along the OESCL band.
3. Optimization Algorithms
3.1. Genetic Algorithm
Algorithm 1: Framework of GA |
- : returns n vectors defined by p angles ( defined in Section 2 with random values from a uniform distribution in the range of the constrains of each parameter.
- chooses q individuals (i.e., we use roulette wheel selection) depending on the probability value given by Equation (3):
- : returns n vectors of dimension p. The i-th vector is the combination of two random parents and selected from . Its d-th parameter is defined at random by or with equal probability (i.e., we are using uniform crossover). This generates new combinations of angles to be evaluated.
- : returns the new combinations of the previous step, but each individual may have some of its parameters added a random value . This updates the angles of each individual.
3.2. Particle Swarm Optimization
- : returns n particles defined by p angles () defined in Section 2, where its attributes have random values from a uniform distribution in the range of the constraints of each parameter.
- : returns the particle with the best FOM.
- : returns the population updated with the use of Equation (4) (this updates the angles of each of the n particles) and Equation (5):
3.3. Covariance Matrix Adaptation Evolution Strategy
Algorithm 2: CMA-ES algorithm |
3.4. Algorithm’s Implementation
4. Results
- (i)
- Convergence rate is the algorithm’s speed in achieving FOM stability, with a variation <2%. To calculate it, we used the mean (Geomean) of the FOM trend.
- (ii)
- To evaluate the similarity of the FOM, we defined the deviation factor as the absolute difference between the geometric mean, Geomean, and the actual FOM trend value, , where j is each algorithm execution, i.e., PSO, PSO, and PSO, and i is the type of algorithm, i.e., Geomean, Geomean, or Geomean. Additionally, the maximum FOM was also considered to characterize the performance of each method.
- (iii)
- The waveband analysis was performed over a defined band, either SCL or OESCL. We analyzed the maximum and minimum transmittance values to characterize a planar response of the device over the given frequency. We considered variations ≤1% of the transmittance to be under the fabrication error limit.
4.1. Convergence Rate
4.2. Similarity of the FOM
4.3. Waveband Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glick, M.; Kimmerling, L.C.; Pfahl, R.C. A roadmap for integrated photonics. Opt. Photonics News 2018, 29, 36–41. [Google Scholar] [CrossRef]
- Rapp, L.; Eiselt, M. Optical Amplifiers for Multi-Band Optical Transmission Systems. J. Light. Technol. 2021, 40, 1579–1589. [Google Scholar] [CrossRef]
- Doerr, C.; Chen, L.; Vermeulen, D.; Nielsen, T.; Azemati, S.; Stulz, S.; McBrien, G.; Xu, X.M.; Mikkelsen, B.; Givehchi, M.; et al. Single-chip silicon photonics 100-Gb/s coherent transceiver. In Proceedings of the OFC 2014, San Francisco, CA, USA, 9–13 March 2014. [Google Scholar]
- Doerr, C. Silicon photonic integration in telecommunications. Front. Phys. 2015, 3, 37. [Google Scholar] [CrossRef]
- Falconi, F.; Melo, S.; Scotti, F.; Malik, M.N.; Scaffardi, M.; Porzi, C.; Ansalone, L.; Ghelfi, P.; Bogoni, A. A Combined Radar & Lidar System Based on Integrated Photonics in Silicon-on-Insulator. J. Light. Technol. 2020, 39, 17–23. [Google Scholar]
- Zhou, Z.; Chen, R.; Li, X.; Li, T. Development trends in silicon photonics for data centers. Opt. Fiber Technol. 2018, 44, 13–23. [Google Scholar] [CrossRef]
- Priti, R.B.; Liboiron-Ladouceur, O. A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8300810. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Li, X.; Xiao, X.; Yu, S. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Res. 2018, 6, 109–116. [Google Scholar] [CrossRef]
- Prosopio-Galarza, R.R.; Adanaque-Infante, L.A.; Hernandez-Figueroa, H.E.; Rubio-Noriega, R.E. An improved 1D diode model for the accurate modeling of parasitics in silicon modulators. In Proceedings of the Silicon Photonics XVI, Online, 6–11 March 2021; Volume 11691, p. 116910S. [Google Scholar]
- Chang, W.; Ren, X.; Ao, Y.; Lu, L.; Cheng, M.; Deng, L.; Liu, D.; Zhang, M. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express 2018, 26, 24135–24144. [Google Scholar] [CrossRef] [PubMed]
- Munk, D.; Katzman, M.; Kaganovskii, Y.; Inbar, N.; Misra, A.; Hen, M.; Priel, M.; Feldberg, M.; Tkachev, M.; Bergman, A.; et al. Eight-channel silicon-photonic wavelength division multiplexer with 17 GHz spacing. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8300310. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Lim, A.E.J.; Lo, G.Q.; Galland, C.; Baehr-Jones, T.; Hochberg, M. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 2013, 21, 1310–1316. [Google Scholar] [CrossRef]
- Piggott, A.Y.; Petykiewicz, J.; Su, L.; Vučković, J. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 2017, 7, 1786. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Shi, W. Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio. Opt. Express 2019, 27, 14338–14343. [Google Scholar] [CrossRef]
- Su, L.; Vercruysse, D.; Skarda, J.; Sapra, N.V.; Petykiewicz, J.A.; Vučković, J. Nanophotonic inverse design with SPINS: Software architecture and practical considerations. Appl. Phys. Rev. 2020, 7, 011407. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems, 2nd ed.; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Schneider, P.I.; Garcia Santiago, X.; Soltwisch, V.; Hammerschmidt, M.; Burger, S.; Rockstuhl, C. Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction. ACS Photonics 2019, 6, 2726–2733. [Google Scholar] [CrossRef]
- Hansen, N.; Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 2001, 9, 159–195. [Google Scholar] [CrossRef]
- Gregory, M.D.; Martin, S.V.; Werner, D.H. Improved Electromagnetics Optimization: The covariance matrix adaptation evolutionary strategy. IEEE Antennas Propag. Mag. 2015, 57, 48–59. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Elsawy, M.M.; Lanteri, S.; Duvigneau, R.; Fan, J.A.; Genevet, P. Numerical Optimization Methods for Metasurfaces. Laser Photonics Rev. 2020, 14, 1900445. [Google Scholar] [CrossRef]
- De la Cruz-Coronado, J.M.; Prosopio-Galarza, R.; Rubio-Noriega, R.E. Silicon Photonics Foundry-oriented Y-junction Optimization. In Proceedings of the 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 3–5 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Prosopio-Galarza, R.; De La Cruz-Coronado, J.; Hernandez-Figueroa, H.E.; Rubio-Noriega, R. Comparison between optimization techniques for Y-junction devices in SOI substrates. In Proceedings of the 2019 IEEE XXVI International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 12–14 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Mak, J.C.; Sideris, C.; Jeong, J.; Hajimiri, A.; Poon, J.K. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 2016, 41, 3868–3871. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wei, W.; Yan, X.; Shen, B.; Luo, Y.; Zhang, X.; Ren, X. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator. Photonics Nanostructures-Fundam. Appl. 2018, 32, 19–23. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Guo, X.; Song, Q.; Xu, K. Inverse design of a dual-mode 3-dB optical power splitter with a 445 nm bandwidth. Opt. Express 2022, 30, 26266–26274. [Google Scholar] [CrossRef]
- Xu, K.; Liu, L.; Wen, X.; Sun, W.; Zhang, N.; Yi, N.; Sun, S.; Xiao, S.; Song, Q. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 2017, 42, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Wang, K.; Skafidas, E. Ultra-broadband and low-loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides. Opt. Lett. 2016, 41, 2053–2056. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 2019, 9, 1368. [Google Scholar] [CrossRef]
- Ruiz, J.L.P.; Amad, A.A.S.; Gabrielli, L.H.; Novotny, A.A. Optimization of the electromagnetic scattering problem based on the topological derivative method. Opt. Express 2019, 27, 33586–33605. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yang, S.; Novack, A.; Ding, R.; Lim, A.E.J.; Lo, G.Q.; Baehr-Jones, T.; Hochberg, M. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express 2013, 21, 29374–29382. [Google Scholar] [CrossRef]
- Angulo-Salas, A.; Hernandez-Figueroa, H.E.; Rubio-Noriega, R.E. A new heuristic method For Y-branches using genetic algorithm with optimum dataset generated with particle swarm optimization. In Proceedings of the Silicon Photonics XVI, Online, 6–11 March 2021; Volume 11691, p. 116910Z. [Google Scholar]
- Fu, P.H.; Huang, D.W. Optimization of a Polarization Beam Splitter for Broadband Operation using a Genetic Algorithm. In Proceedings of the 2018 IEEE 15th International Conference on Group IV Photonics (GFP), Cancun, Mexico, 29–31 August 2018. [Google Scholar]
- Fu, P.H.; Huang, T.Y.; Fan, K.W.; Huang, D.W. Optimization for ultrabroadband polarization beam splitters using a genetic algorithm. IEEE Photonics J. 2018, 11, 6600611. [Google Scholar] [CrossRef]
- da Silva Santos, C.H.; Gonçalves, M.S.; Hernández-Figueroa, H.E. Designing Novel Photonic Devices by Bio-Inspired Computing. IEEE Photonics Technol. Lett. 2010, 22, 1177–1179. [Google Scholar] [CrossRef]
- Kojima, K.; Koike-Akino, T. Novel multimode interference devices for wavelength beam splitting/combining. In Proceedings of the 2015 International Conference on Photonics in Switching (PS), Florence, Italy, 22–25 September 2015. [Google Scholar]
- Baskar, S.; Suganthan, P.; Ngo, N.; Alphones, A.; Zheng, R. Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm. Opt. Commun. 2006, 260, 716–722. [Google Scholar] [CrossRef]
- Hansen, N. The CMA Evolution Strategy: A Tutorial. arXiv 2016, arXiv:1604.00772. [Google Scholar]
- Absil, P.P.; De Heyn, P.; Chen, H.; Verheyen, P.; Lepage, G.; Pantouvaki, M.; De Coster, J.; Khanna, A.; Drissi, Y.; Van Thourhout, D.; et al. Imec iSiPP25G silicon photonics: A robust CMOS-based photonics technology platform. In Proceedings of the Silicon Photonics X; SPIE: Bellingham, WA, USA, 2015; Volume 9367, pp. 166–171. [Google Scholar]
Work | Device | Method | Bandwidth | Loss | Size |
---|---|---|---|---|---|
Mak 2016 [28] | 2 × 2 splitter | PSO | 1530–1570 nm | S: 4.11 dB E: 6 dB | 4.8 × 4.8 m |
Lu 2018 [29] | Beam splitter | PSO | 1500–1600 nm | S: no losses | 2 × 2 m |
Chang 2018 [10] | 3 dB Y-splitter | Subwavelength inverse design | 1520–1580 nm | E: 1.5 dB | 2.88 × 2.88 m |
Xu 2022 [30] | 3 dB Y-splitter | ADTO | 1588–2033 nm | S: 0.83 dB | 5.4 × 2.88 m |
Xu 2017 [31] | 3 dB Y-splitter | Nonlinear fast search | 1530–1560 nm | E: 0.96 dB | 3.6 × 3.6 m |
Piggott 2017 [13] | 1 × 3 splitter | Inverse design | 1400–1700 nm | E: 0.64 dB | 3.8 × 2.5 m |
Wang 2016 [32] | 3 dB Y-splitter | Taper design | 1530–1600 nm | E: <0.19 dB | 5 m length taper |
Tahersima 2019 [33] | 3 dB Y-splitter | DNN inverse design | 1450–1650 nm | S: 0.45 dB | 2.6 × 2.6 m |
Our work | 3 dB Y-splitter | CMA-ES | 1260–1625 nm | S: 0.15 dB | 2 × 1.2 m |
Parameter | Value | Description |
---|---|---|
n | 40 | population size |
k | 100 | number of iterations |
p | 11 | number of characteristics |
q | 10 | number of selected parents |
r | 3 | range of random change in parameters |
1 | inertia weight | |
1 | relative attraction coefficients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosopio-Galarza, R.; García-Gonzales, J.L.; Jara, F.; Armas-Alvarado, M.; Gonzalez, J.; Rubio-Noriega, R.E. Angle-Based Parametrization with Evolutionary Optimization for OESCL-Band Y-Junction Splitters. Photonics 2023, 10, 152. https://doi.org/10.3390/photonics10020152
Prosopio-Galarza R, García-Gonzales JL, Jara F, Armas-Alvarado M, Gonzalez J, Rubio-Noriega RE. Angle-Based Parametrization with Evolutionary Optimization for OESCL-Band Y-Junction Splitters. Photonics. 2023; 10(2):152. https://doi.org/10.3390/photonics10020152
Chicago/Turabian StyleProsopio-Galarza, Roy, J. Leonidas García-Gonzales, Freddy Jara, Maria Armas-Alvarado, Jorge Gonzalez, and Ruth E. Rubio-Noriega. 2023. "Angle-Based Parametrization with Evolutionary Optimization for OESCL-Band Y-Junction Splitters" Photonics 10, no. 2: 152. https://doi.org/10.3390/photonics10020152
APA StyleProsopio-Galarza, R., García-Gonzales, J. L., Jara, F., Armas-Alvarado, M., Gonzalez, J., & Rubio-Noriega, R. E. (2023). Angle-Based Parametrization with Evolutionary Optimization for OESCL-Band Y-Junction Splitters. Photonics, 10(2), 152. https://doi.org/10.3390/photonics10020152