Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy
Abstract
:1. Introduction
2. Background and Related Work
2.1. Deconvolution
2.2. Multivariate Curve Resolution
3. Materials and Methods
3.1. Experimental Setup
3.2. Samples
3.3. Image Recording and Pre-Processing
- : image of the sample for plane m (sample measurement);
- : image of the empty slide for plane m (reference measurement).
3.4. Z-Scanning Brightfield Microscopy Images as MCR Data Set
4. Results
4.1. Multiplane Image Restoration of 3D Objects
4.2. Comparison with 3D Deconvolution
4.3. Influence of the z-Step Value
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Conchello, J.A.; Lichtman, J.W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Sarder, P.; Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 2006, 23, 32–45. [Google Scholar] [CrossRef]
- Biggs, D.S.C. 3D Deconvolution Microscopy. Curr. Protoc. Cytom. 2010, 52, 12.19.1–12.19.20. [Google Scholar] [CrossRef]
- Dan, D.; Yao, B.; Lei, M. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull. 2014, 59, 1291–1307. [Google Scholar] [CrossRef]
- Paddock, S.W. Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol. 2000, 16, 127–149. [Google Scholar] [CrossRef]
- Patel, D.V.; McGhee, C.N. Quantitative analysis of in vivo confocal microscopy images: A review. Surv. Ophthalmol. 2013, 58, 466–475. [Google Scholar] [CrossRef]
- König, K. Multiphoton microscopy in life sciences. J. Microsc. 2001, 200, 83–104. [Google Scholar] [CrossRef]
- Langhorst, M.F.; Schaffer, J.; Goetze, B. Structure brings clarity: Structured illumination microscopy in cell biology. Biotechnol. J. 2009, 4, 858–865. [Google Scholar] [CrossRef]
- Jost, A.; Heintzmann, R. Superresolution Multidimensional Imaging with Structured Illumination Microscopy. Annu. Rev. Mater. Res. 2013, 43, 261–282. [Google Scholar] [CrossRef]
- Saxena, M.; Eluru, G.; Gorthi, S.S. Structured illumination microscopy. Adv. Opt. Photonics 2015, 7, 241–275. [Google Scholar] [CrossRef]
- Sanderson, J. Light Sheet Microscopy. In Understanding Light Microscopy, 1st ed.; Sanderson, J., Ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 483–506. [Google Scholar] [CrossRef]
- Wan, Y.; McDole, K.; Keller, P.J. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev. Biol. 2019, 35, 655–681. [Google Scholar] [CrossRef]
- Tadrous, P.J. A method of PSF generation for 3D brightfield deconvolution. J. Microsc. 2010, 237, 192–199. [Google Scholar] [CrossRef]
- Yao, S.; Mills, J.K.; Ajamieh, I.A.; Li, H.; Zhan, X. Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy. Opt. Lasers Eng. 2020, 130, 106093. [Google Scholar] [CrossRef]
- McNally, J.G.; Karpova, T.; Cooper, J.; Conchello, J.A. Three-Dimensional Imaging by Deconvolution Microscopy. Methods 1999, 19, 373–385. [Google Scholar] [CrossRef]
- Icha, J.; Weber, M.; Waters, J.C.; Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 2017, 39, 1700003. [Google Scholar] [CrossRef]
- Lac, A.; Le Lam, A.; Heit, B. Optimizing Long-Term Live Cell Imaging. In Fluorescent Microscopy; Heit, B., Ed.; Humana: New York, NY, USA, 2022; Volume 2440, pp. 57–73. [Google Scholar] [CrossRef]
- Streibl, N. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 1985, 2, 121–127. [Google Scholar] [CrossRef]
- Maa, X.; Zhanga, Z.; Yaoa, M.; Penga, J.; Zhonga, J. Spatially-incoherent annular illumination microscopy for bright-field optical sectioning. Ultramicroscopy 2018, 195, 74–84. [Google Scholar] [CrossRef]
- Candia, C.N.H.; Gutiérrez-Medina, B. Direct Imaging of Phase Objects Enables Conventional Deconvolution in Bright Field Light Microscopy. PLoS ONE 2014, 9, e89106. [Google Scholar] [CrossRef]
- Holmes, T.J.; O’Connor, N.J. Blind deconvolution of 3D transmitted light brightfield micrographs. J. Microsc. 2000, 200, 114–127. [Google Scholar] [CrossRef]
- Agnero, M.A.; Konan, K.; Tokou, Z.G.C.S.; Kossonou, Y.T.A.; Dion, B.S.; Kaduki, K.A.; Zoueu, J.T. Malaria-Infected Red Blood Cell Analysis through Optical and Biochemical Parameters Using the Transport of Intensity Equation and the Microscope’s Optical Properties. Sensors 2019, 19, 3045. [Google Scholar] [CrossRef]
- Aguet, F.; Van de Ville, D.; Unser, M. Model-based 2.5-D deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process. 2008, 17, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.A.; Arockiaraj, F.G.; Gopinath, S.; Smith, D.; Kahro, T.; Valdma, S.-M.; Bleahu, A.; Ng, S.H.; Reddy, A.N.K.; Katkus, T.; et al. Deep Deconvolution of Object Information Modulated by a Refractive Lens Using Lucy-Richardson-Rosen Algorithm. Photonics 2022, 9, 625. [Google Scholar] [CrossRef]
- Gutiérrez-Medina, B. Optical sectioning of unlabeled samples using brightfield microscopy. Proc. Natl. Acad. Sci. USA 2022, 119, e2122937119. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.; Breckon, T. Image restoration. In Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab; Solomon, C., Breckon, T., Eds.; Wiley-Blackwell: Hoboken, NJ, USA; Oxford, UK, 2011; pp. 141–167. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Image restoration. In Digital Image Processing, 2nd ed.; Gonzalez, R.C., Woods, R.E., Eds.; Prentice Hall: Hoboken, NJ, USA, 2002; pp. 220–281. [Google Scholar]
- Holmes, T.J.; Bhattacharyya, S.; Cooper, J.A.; Hanzel, D.; Krishnamurthi, V.; Lin, W.; Roysam, B.; Szarowski, D.H.; Turner, J.N. Light Microscopic Images Reconstructed by Maximum likelihood Deconvolution. In Handbook of Biological Confocal Microscopy; Pawley, J.B., Ed.; Springer: Boston, MA, USA, 1995; pp. 389–402. [Google Scholar] [CrossRef]
- Law, N.F.; Lane, R.G. Blind deconvolution using least squares minimisation. Opt. Commun. 1996, 128, 341–352. [Google Scholar] [CrossRef]
- Biggs, D.S.C.; Andrews, M. Acceleration of iterative image restoration algorithms. Appl. Opt. 1997, 36, 1766–1775. [Google Scholar] [CrossRef] [Green Version]
- Aguet, F.; Van De Ville, D.; Unser, M. An accurate PSF model with few parameters for axially shift-variant deconvolution. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 157–160. [Google Scholar] [CrossRef]
- Gibson, S.F.; Lanni, F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 1991, 8, 1601–1613. [Google Scholar] [CrossRef]
- Offroy, M. Développement de la Super-Résolution Appliquée à L'imagerie des Spectroscopies Vibrationnelles. Ph.D. Thesis, Université de Lille 1, Lille, France, 17 January 2012. Available online: https://tel.archives-ouvertes.fr/tel-00687944 (accessed on 9 January 2023).
- de Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Anal. Methods 2014, 6, 4964–4976. [Google Scholar] [CrossRef]
- Rutan, S.C.; de Juan, A.; Tauler, R. Introduction to Multivariate Curve Resolution. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, R., Eds.; Elsevier: Oxford, UK, 2009; pp. 249–259. [Google Scholar]
- de Juan, A.; Tauler, R. Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications. Crit. Rev. Anal. Chem. 2007, 36, 163–176. [Google Scholar] [CrossRef]
- Hamilton, J.C.; Gemperline, P.J. Mixture analysis using factor analysis. II: Self-modeling curve resolution. J. Chemom. 1990, 4, 1–13. [Google Scholar] [CrossRef]
- de Juan, A.; Tauler, R. Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in multivariate resolution. Anal. Chim. Acta 2003, 500, 195–210. [Google Scholar] [CrossRef]
- Duponchel, L.; Elmi-Rayaleh, W.; Ruckebusch, C.; Huvenne, J.P. Multivariate Curve Resolution Methods in Imaging Spectroscopy: Influence of Extraction Methods and Instrumental Perturbations. J. Chem. Inf. Comput. Sci. 2003, 43, 2057–2067. [Google Scholar] [CrossRef]
- Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63, 1425–1432. [Google Scholar] [CrossRef]
- Van Benthem, M.H.; Keenan, M.R. Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chemom. 2004, 18, 441–450. [Google Scholar] [CrossRef]
- Van Benthem, M.H.; Keenan, M.R.; Haaland, D.M. Applications on equality constraints on variables during alterning least squares procedures. J. Chemom. 2002, 16, 613–622. [Google Scholar] [CrossRef]
- Golshana, A.; Abdollahia, H.; Maederb, M. The reduction of rotational ambiguity in soft-modeling by introducing hard models. Anal. Chim. Acta 2012, 709, 32–40. [Google Scholar] [CrossRef]
- Hugeliera, S.; Devosa, O.; Ruckebuscha, C. On the implementation of spatial constraints in multivariate curve resolution alternating least squares for hyperspectral image analysis. J. Chemom. 2015, 29, 557–561. [Google Scholar] [CrossRef]
- Hugelier, S.; Piqueras, S.; Bedia, C.; de Juan, A.; Ruckebusch, C. Application of a sparseness constraint in multivariate curve resolution—Alternating least squares. Anal. Chim. Acta 2018, 1000, 100–108. [Google Scholar] [CrossRef]
- de Juan, A.; Maeder, M.; Hancewicz, T.; Tauler, R. Use of local rank-based spatial information for resolution of spectroscopic images. J. Chemom. 2008, 22, 291–298. [Google Scholar] [CrossRef]
- Omucheni, D.L.; Kaduki, K.A.; Bulimo, W.D.; Angeyo, H.K. Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malar. J. 2014, 13, 485. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Hovenier, J.W.; Mackowski, D.W. Single scattering by a small volume element. J. Opt. Soc. Am. A 2004, 21, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, M.I.; Liu, L.; Videen, G. Conditions of applicability of the single scattering approximation. Opt. Express 2007, 15, 7522–7527. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhai, J.; Wang, C. Investigation of the single scattering approximation through direct electromagnetic scattering simulation. OSA Contin. 2021, 4, 2496–2509. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.I. Ballistic Imaging and Microscopy. In Biomedical Optics: Principles and Imaging; Wang, L.V., Wu, H.I., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 153–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dion, S.B.; Agre, D.J.F.U.; Agnero, A.M.; Zoueu, J.T. Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics 2023, 10, 163. https://doi.org/10.3390/photonics10020163
Dion SB, Agre DJFU, Agnero AM, Zoueu JT. Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics. 2023; 10(2):163. https://doi.org/10.3390/photonics10020163
Chicago/Turabian StyleDion, Sylvere Bienvenue, Don Jean François Ulrich Agre, Akpa Marcel Agnero, and Jérémie Thouakesseh Zoueu. 2023. "Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy" Photonics 10, no. 2: 163. https://doi.org/10.3390/photonics10020163
APA StyleDion, S. B., Agre, D. J. F. U., Agnero, A. M., & Zoueu, J. T. (2023). Multiplane Image Restoration Using Multivariate Curve Resolution: An Alternative Approach to Deconvolution in Conventional Brightfield Microscopy. Photonics, 10(2), 163. https://doi.org/10.3390/photonics10020163