Hard-Templated Porous Niobia Films for Optical Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. TEM Characterization of Thin Composite Films
3.2. Optical Characterization and Generation of Porosity
3.3. Wetting Behavior of Composite Films
3.4. Sensing Response toward Acetone Vapors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, X.; Zhao, L.; Xu, L.; Wang, Y.; Liu, K.; Wang, Y.; Chen, G.Y.; Liu, T.; Wang, Y. Review of Optical Humidity Sensors. Sensors 2021, 21, 8049. [Google Scholar] [CrossRef] [PubMed]
- Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022, 22, 2649. [Google Scholar] [CrossRef]
- Gil-Herrera, L.K.; Pariente, J.A.; Gallego-Gómez, F.; Gándara, F.; Juárez, B.H.; Blanco, A.; López, C. Hierarchically Porous Carbon Photonic Structures. Adv. Funct. Mater. 2017, 28, 1703885. [Google Scholar] [CrossRef]
- Shen, Y.; Tissot, A.; Serre, C. Recent progress on MOF-based optical sensors for VOC sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Abegg, S.; Wegner, K.; Pratsinis, S.E. Zeolite membranes for highly selective formaldehyde sensors. Sens. Actuators B Chem. 2018, 257, 916–923. [Google Scholar] [CrossRef]
- Choi, S.Y.; Mamak, M.; Freymann, G.; Chopra, N.; Ozin, G.A. Mesoporous Bragg Stack Color Tunable Sensors. Nano Lett. 2006, 6, 2456–2461. [Google Scholar] [CrossRef]
- Puzzo, D.P.; Bonifacio, L.D.; Oreopoulos, J.; Yip, C.M.; Manners, I.; Ozin, G.A. Color from colorless nanomaterials: Bragg reflectors made of nanoparticles. J. Mater. Chem. 2009, 19, 3500. [Google Scholar] [CrossRef]
- Redel, E.; Mirtchev, P.; Huai, C.; Petrov, S.; Ozin, G.A. Nanoparticle Films and Photonic Crystal Multilayers from Colloidally Stable, Size-Controllable Zinc and Iron Oxide Nanoparticles. ACS Nano 2011, 5, 2861–2869. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Z.; Wu, Y.; Yang, B. One-dimensional photonic crystals: Fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 2016, 6, 4505–4520. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Xu, J.; Liu, Z. Recent advances of polymeric photonic crystals in molecular recognition. Dye Pigment 2022, 205, 110544. [Google Scholar]
- Zappa, D.; Bertuna, A.; Comini, E.; Kaur, N.; Poli, N.; Sberveglieri, V.; Sberveglieri, G. Metal oxide nanostructures: Preparation, characterization and functional applications as chemical sensors. Beilstein J. Nanotechnol. 2017, 8, 1205–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, H.; Castán, H.; Perez, E.; Dueñas, S.; Bailón, L.; Blanquart, T.; Niinistö, J.; Kukli, K.; Ritala, M.; Leskelä, M. Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors. Semicond. Sci. Technol. 2013, 28, 055005. [Google Scholar] [CrossRef]
- Hota, M.K.; Bera, M.K.; Maiti, C.K. Flexible metal-insulator-metal on polyethylene terephthalate plastic substrates. Semicond. Sci. Technol. 2012, 27, 105001. [Google Scholar]
- Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Grätzel, M.; Gal, D.; Rühle, S.; Cahen, D. Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States. J. Phys. Chem. B 2001, 105, 6347–6352. [Google Scholar] [CrossRef]
- Siddiki, M.K.; Venkatesan, S.; Qiao, Q. Nb2O5 as a new electron transport layer for double junction polymer solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4682–4686. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Szymańska, M.; Kaczmarek, D.; Kalisz, M.; Wojcieszak, D.; Domaradzki, J.; Placido, F. Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application. Appl. Surf. Sci. 2014, 301, 63–69. [Google Scholar] [CrossRef]
- Chen, K.N.; Hsu, C.M.; Liu, J.; Liou, Y.C.; Yang, C.F. Investigation of Antireflection Nb2O5 Thin Films by the Sputtering Method under Different Deposition Parameters. Micromachines 2016, 7, 151. [Google Scholar] [CrossRef]
- Rani, R.A.; Zoolfakar, A.S.; O’Mullane, A.P.; Austin, M.W.; Kalantar-Zadeh, K. Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2014, 2, 15683–15703. [Google Scholar] [CrossRef]
- Georgiev, R.; Chorbadzhiyska, Y.; Pavlov, V.; Georgieva, B.; Babeva, T. Optical Detection of VOC Vapors Using Nb2O5 Bragg Stack in Transmission Mode. Photonics 2021, 8, 399. [Google Scholar] [CrossRef]
- Poolakkandy, R.; Menamparambath, M. Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides. Nanoscale Adv. 2020, 2, 5015–5045. [Google Scholar] [CrossRef]
- Pavlenko, V.; Khosravi, S.; Żółtowska, S.; Haruna, A.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K.; Abbas, Q.; et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R. Rep. 2022, 149, 100682. [Google Scholar] [CrossRef]
- Johnson, S.; Ollivier, P.; Mallouk, T. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 1999, 283, 963–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, G.; Schüth, F. Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 2014, 43, 313–344. [Google Scholar]
- Zhang, L.; Jin, L.; Liu, B.; He, J. Templated growth of crystalline mesoporous materials: From soft/hard templates to colloidal templates. Front. Chem. 2019, 7, 22. [Google Scholar] [CrossRef]
- Lazarova, K.; Vasileva, M.; Marinov, G.; Babeva, T. Optical characterization of sol-gel derived Nb2O5 thin films. Opt. Laser Technol. 2014, 58, 114–118. [Google Scholar] [CrossRef]
- Shu, Z.; Li, T.; Zhou, J.; Chen, Y.; Yu, D.; Wang, Y. Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Appl. Clay Sci. 2014, 102, 33–40. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1208. [Google Scholar] [CrossRef]
- Ghazzal, M.N.; Deparis, O.; Errachid, A.; Kebaili, H.; Simonis, P.; Eloy, P.; Vigneron, J.P.; De Coninck, J.; Gaigneaux, E.M.J. Tuning the selectivity and sensitivity of mesoporous dielectric multilayers by modifiying the hydrophobic–hydrophilic balance of the silica layer Tuning the selectivity and sensitivity of mesoporous dielectric multilayers by modifiying the hydrophobic–hydrophilic balance of the silica layer. Mater. Chem. 2012, 22, 22526–22532. [Google Scholar]
Etching Time (s) | 50:1 | 20:1 | 10:1 | 5:1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d (nm) | fniobia (%) | fsilica (%) | fair (%) | d (nm) | fniobia (%) | fsilica (%) | fair (%) | d (nm) | fniobia (%) | fsilica (%) | fair (%) | d (nm) | fniobia (%) | fsilica (%) | fair (%) | |
0 | 75 | 65 | 14 | 21 | 102 | 46 | 34 | 20 | 156 | 29 | 38 | 33 | 266 | 16 | 23 | 61 |
30 | 76 | 65 | 10 | 25 | 102 | 46 | 34 | 20 | 151 | 29 | 38 | 33 | 259 | 16 | 10 | 74 |
60 | 76 | 65 | 10 | 25 | 102 | 46 | 30 | 24 | 150 | 29 | 26 | 45 | 248 | 16 | 5 | 79 |
90 | 76 | 65 | 8 | 27 | 102 | 46 | 24 | 30 | 154 | 29 | 15 | 56 | 239 | 16 | 0 | 84 |
120 | 76 | 65 | 6 | 29 | 103 | 46 | 14 | 40 | 155 | 29 | 0 | 71 | 220 | 16 | 0 | 84 |
150 | 76 | 65 | 10 | 25 | 105 | 46 | 8 | 46 | 158 | 24 | 0 | 76 | 100 | 21 | 0 | 79 |
180 | 75 | 65 | 10 | 25 | 105 | 46 | 12 | 42 | 159 | 21 | 0 | 79 | - | - | - | - |
210 | 75 | 65 | 9 | 27 | 104 | 46 | 0 | 54 | 158 | 18 | 0 | 82 | - | - | - | - |
240 | 76 | 65 | 6 | 29 | 107 | 37 | 0 | 63 | 124 | 20 | 0 | 80 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlov, V.; Georgiev, R.; Lazarova, K.; Georgieva, B.; Babeva, T. Hard-Templated Porous Niobia Films for Optical Sensing Applications. Photonics 2023, 10, 167. https://doi.org/10.3390/photonics10020167
Pavlov V, Georgiev R, Lazarova K, Georgieva B, Babeva T. Hard-Templated Porous Niobia Films for Optical Sensing Applications. Photonics. 2023; 10(2):167. https://doi.org/10.3390/photonics10020167
Chicago/Turabian StylePavlov, Venelin, Rosen Georgiev, Katerina Lazarova, Biliana Georgieva, and Tsvetanka Babeva. 2023. "Hard-Templated Porous Niobia Films for Optical Sensing Applications" Photonics 10, no. 2: 167. https://doi.org/10.3390/photonics10020167
APA StylePavlov, V., Georgiev, R., Lazarova, K., Georgieva, B., & Babeva, T. (2023). Hard-Templated Porous Niobia Films for Optical Sensing Applications. Photonics, 10(2), 167. https://doi.org/10.3390/photonics10020167