Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ideguchi, T.; Holzner, S.; Bernhardt, B.; Guelachvili, G.; Picque, N.; Haensch, T.W. Coherent Raman spectra-imaging with laser frequency comb. Nature 2013, 502, 355–358. [Google Scholar] [CrossRef]
- Ji, N.; Magee, J.C.; Betzig, E. High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat. Methods 2008, 5, 197. [Google Scholar] [CrossRef]
- Chen, H.; Chang, G.; Xu, S.; Yang, Z.; Kärtner, F. 3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Opt. Lett. 2012, 37, 3522–3524. [Google Scholar] [CrossRef]
- Diddams, S.A. The evolving optical frequency comb. J. Opt. Soc. Am. B 2010, 27, B51. [Google Scholar] [CrossRef]
- Stark, S.P.; Steinmetz, T.; Probst, R.A.; Hundertmark, H.; Wilken, T.; Haensch, T.W.; Udem, T.; Russell, P.S.J.; Holzwarth, R. 14 GHz visible supercontinuum generation: Calibration sources for astronomical spectrographs. Opt. Express 2011, 19, 15690. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, L.; Set, S.; Yamashita, S. 2.5 GHz harmonic mode locking from a femtosecond Yb-doped fiber laser with high fundamental repetition rate. Opt. Lett. 2021, 46, 3621–3624. [Google Scholar] [CrossRef]
- Ling, Y.; Huang, Q.; Song, Q.; Yan, Z.; Mou, C.; Zhou, K.; Zhang, L. Intracavity birefringence-controlled GHz-tuning range passively harmonic mode-locked fiber laser based on NPR. Appl. Opt. 2020, 59, 6724. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Pang, M.; Menyuk, C.; Russell, P.S.J. Sub-100-fs 1.87 GHz mode-locked fiber laser using stretched-soliton effects. Optica 2016, 3, 1366. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, W.; Zhou, Y.; Qiao, T.; Lin, W.; Xu, S.; Yang, Z. 5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser. Opt. Express 2017, 25, 27646–27651. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Yu, Z.; Guo, L.; Zhang, Q.; Zhang, N.; Liu, H.; Shum, P. GHz-repetition-rate fundamentally mode-locked, isolator-free ring cavity Yb-doped fiber lasers with SESAM mode-locking. Opt. Express 2022, 30, 43543. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lin, W.; Cheng, H.; Zhou, Y.; Qiao, T.; Liu, Y.; Ma, P.; Zhou, S.; Yang, Z. Gain-guided soliton: Scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz. Opt. Express 2019, 27, 10438–10448. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, W.; Zhou, Y.; Qiao, T.; Lin, W.; Guo, Y.; Xu, S.; Yang, Z. High-repetition-rate ultrafast fiber lasers. Opt. Express 2018, 26, 16411. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Jiang, T.; Wang, A.; Zhang, Z. 750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser. Opt. Lett. 2013, 38, 314. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Gao, X.; Niu, F.; Jiang, T.; Wang, A.; Zhang, Z. 1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency. Appl. Opt. 2015, 54, 8350–8353. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Yang, H.; Zhang, Z. 503MHz repetition rate femtosecond Yb:fiber ring laser with an integrated WDM collimator. Opt. Express 2011, 19, 25412. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhao, M.; Jin, X.; Li, Q.; Chen, Z.; Wang, A.; Zhang, Z. Attosecond timing jitter from high repetition rate femtosecond solid-state fiber lasers. Optica 2022, 9, 874–877. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, H.; Hou, D.; Meng, F.; Ma, Y.; Xu, H.; Kärtner, X.; Song, Y.; Zhang, Z. Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers. Opt. Express 2019, 27, 11273. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, B.; Ishii, H.; Meng, F.; Nakajima, Y.; Matsushima, I.; Schibli, T.; Zhang, Z.; Minoshima, K. Low-noise 750 MHz spaced ytterbium fiber frequency combs. Opt. Lett. 2018, 43, 4136. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jiang, X.; Wang, A.; Chang, G.; Kaertner, F.; Zhang, Z. Robust 700 MHz mode-locked Yb:fiber laser with a biased nonlinear amplifying loop mirror. Opt. Express 2018, 26, 26003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, H.; Ma, Y.; Song, Y.; Zhang, Z. Timing jitter of high-repetition-rate mode-locked fiber lasers. Opt. Lett. 2018, 43, 4382. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, C.; Song, Y.; Liu, J.; Zhu, H.; Duan, Y.; Zhang, H. Simultaneous generation and real-time observation of loosely bound solitons and noise-like pulses in a dispersion-managed fiber laser with net-normal dispersion. Opt. Express 2020, 28, 39463–39474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Liu, Y.; He, R.; Zhao, J.; Wang, G.; Yang, G. Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser. Opt. Lett. 2018, 43, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Xiao, Q.; Wang, S.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Ma, C.; Wang, C.; Gao, B.; Adams, J.; Wu, G.; Zhang, H. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 2019, 6, 041304. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17, 2006054. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H.; Liu, J.; Chao, J.; Liu, T.; Zhang, H.; Wang, G.; Lyu, W.; Wageh, S.; Al-Hartomy, O.; et al. Integration and Applications of Nanomaterials for Ultrafast Photonics. Laser Photonics Rev. 2022, 16, 2200386. [Google Scholar] [CrossRef]
- Wu, L.; Fan, T.; Wei, S.; Xu, Y.; Zhang, Y.; Ma, D.; Shu, Y.; Xiang, Y.; Liu, J.; Li, J.; et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron. Adv. 2022, 5, 200046. [Google Scholar] [CrossRef]
- Pei, H.; Puppe, J.; Chen, S.; Sheikhsofla, M.; Nees, J.; Yang, Y.; Wilcox, R.; Leemans, W.; Galvanauskas, A. 10 mJ Energy Extraction from Yb-doped 85 µm core CCC Fiber using Coherent Pulse Stacking Amplification of fs Pulses. In OSA Laser Congress; Optica Publishing Group: Washington, DC, USA, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Shen, J.; Cao, Y.; Yuan, S.; Zeng, H. Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”. Photonics 2023, 10, 192. https://doi.org/10.3390/photonics10020192
Hu M, Shen J, Cao Y, Yuan S, Zeng H. Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”. Photonics. 2023; 10(2):192. https://doi.org/10.3390/photonics10020192
Chicago/Turabian StyleHu, Mengyun, Jiawei Shen, Yuzhi Cao, Shuai Yuan, and Heping Zeng. 2023. "Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”" Photonics 10, no. 2: 192. https://doi.org/10.3390/photonics10020192
APA StyleHu, M., Shen, J., Cao, Y., Yuan, S., & Zeng, H. (2023). Generation of 48 fs, 1 GHz Fundamentally Mode-Locked Pulses Directly from an Yb-doped “Solid-State Fiber Laser”. Photonics, 10(2), 192. https://doi.org/10.3390/photonics10020192