A Sparse Capture Light-Field Coding Algorithm Based on Target Pixel Matching for a Multi-Projector-Type Light-Field Display System
Abstract
:1. Introduction
2. Structure of the MPTLFD System and Its Traditional Light-Field Coding Algorithm
2.1. Structure of the Display End and Capture End of the MPTLFD System
2.2. The Principle of the Improved SPOC Algorithm Applied to a MPTLFD System
3. Sparse Light-Field Coding Algorithm Based on Target Pixel Matching
- (1)
- Calculate the two capture cameras that are closest to a display ray cast by the projector ;
- (2)
- Determine the interval of the imaging pixel of the object that the display ray needs to restore;
- (3)
- Determine the coordinate of the intersection of the display ray and the line between a pixel in the interval and the optical center of the camera;
- (4)
- Calculate the image pixel of the intersection coordinate taken by another nearest camera;
- (5)
- Traverse all pixels in the interval to obtain multiple pixel pairs with the above relation;
- (6)
- Find the pixel pair that minimizes to determine the imaging pixels of the object;
- (7)
- Calculate the display pixels values by Equation (13).
4. Experimental Verification and Analysis
4.1. Structure of the Virtual Scene Capture End
4.2. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, J.-Y.; Lee, H.; Lee, B.-R.; Lee, K.-H. Holographic and Light-Field Imaging as Future 3-D Displays. Proc. IEEE 2018, 105, 789–804. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, G.; Feng, Q.B.; Wang, A.T.; Ming, H. Resolution priority holographic stereogram based on integral imaging with enhanced depth range. Opt. Express 2019, 28, 2689–2802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lv, G.; Wang, Z.; Hu, Z.; Ding, S.; Feng, Q. Resolution-enhanced holographic stereogram based on integral imaging using an intermediate-view synthesis technique. Opt. Commun. 2020, 458, 124656. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, W.F.; Jiang, X.Y.; Zhang, T.; Yu, H.Y.; Li, P.; Liu, X.L.; Le, S. Elemental image array generation algorithm with accurate depth information for integral imaging. Appl. Opt. 2021, 60, 9885–9886. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Morii, T. Development of the 3D Adapter Using an Optical Grating Film for Stereoscopic Viewing; SPIE Optics East: Boston, MA, USA, 2006. [Google Scholar]
- Luo, J.-Y.; Wang, Q.-H.; Zhao, W.-X.; Tao, Y.-H.; Li, D.-H. Autostereoscopic Three Dimensional Display Based on Two Parallax Barriers. In Proceedings of the 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 19–21 June 2010. [Google Scholar]
- Kao, Y.Y.; Huang, Y.P.; Yang, K.X.; Chao, P.C.P.; Tsai, C.C.; Mo, C.N. 11.1: An Auto-Stereoscopic 3D Display Using Tunable Liquid Crystal Lens Array That Mimics Effects of GRIN Lenticular Lens Array. Sid Symp. Dig. Tech. Pap. 2009, 40, 111–114. [Google Scholar] [CrossRef]
- Blanche, P.A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lin, W.; Gu, T.; Flores, D.; Wang, P.; Hsieh, W.Y.; Kathaperumal, M.; et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 2010, 468, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Sonobe, N. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects. Appl. Opt. 2018, 58, A150–A156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, H.; Wang, F.; Gu, X.; Qian, X.; Poon, T. Polygon-based computer-generated holography: A review of fundamentals and recent progress [Invited]. Appl. Opt. 2022, 61, B363–B384. [Google Scholar] [CrossRef] [PubMed]
- Takaki, Y.; Takenaka, H.; Morimoto, Y.; Konuma, O.; Hirabayashi, K. Multi-view display module employing MEMS projector array. Opt. Express 2012, 20, 28258. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S. Real-time rendering of multi-perspective images for a glasses-free tabletop 3d display. In Proceedings of the 2013 3DTV Vision Beyond Depth (3DTV-CON), Aberdeen, UK, 7–8 October 2013. [Google Scholar]
- Jones, A.; Nagano, K.; Liu, J.; Busch, J.; Yu, X.; Bolas, M.T.; Debevec, P.E. Interpolating Vertical Parallax for an Autostereoscopic 3D Projector Array. J. Electron. Imaging 2014, 23, 011005. [Google Scholar]
- Zhong, Q.; Chen, B.S.; Li, H.F.; Liu, X.; Xia, J.; Wang, B.P.; Xu, H.S. Multi-projector-type immersive light field display. Chin. Opt. Lett. 2014, 12, 060009. [Google Scholar] [CrossRef]
- Balogh, T.; Kovács, P.T. Real-time 3D light field transmission. In Proceedings of the Real-Time Image and Video Processing 2010, San Jose, CA, USA, 16 April 2010. [Google Scholar]
- Huang, Y.Q.; Yan, Z.; Jiang, X.Y.; Jing, T.; Chen, S.; Lin, M.; Zhang, J.G.; Yan, X.P. Performance Enhanced Elemental Array Generation for Integral Image Display Using Pixel Fusion. Front. Phys. 2021, 9, 639117. [Google Scholar] [CrossRef]
- Navarro, H.; Martínez-Cuenca, R.; Saavedra, G.; Martínez-Corral, M.; Javidi, B. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC). Opt. Express 2010, 18, 25573–25583. [Google Scholar] [CrossRef] [PubMed]
Algorithm | PSNR(dB) | SSIM | Encoding Time(S) |
---|---|---|---|
SPOC | 38.68 | 0.65 | 15.69 |
Target pixel matching | 39.93 | 0.82 | 120.24 |
Algorithm | PSNR(dB) | SSIM | Encoding Time(S) |
---|---|---|---|
SPOC | 39.13 | 0.72 | 15.69 |
Target pixel matching | 40.76 | 0.88 | 120.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Yu, H.; Jiang, X.; Sang, X. A Sparse Capture Light-Field Coding Algorithm Based on Target Pixel Matching for a Multi-Projector-Type Light-Field Display System. Photonics 2023, 10, 223. https://doi.org/10.3390/photonics10020223
Meng Q, Yu H, Jiang X, Sang X. A Sparse Capture Light-Field Coding Algorithm Based on Target Pixel Matching for a Multi-Projector-Type Light-Field Display System. Photonics. 2023; 10(2):223. https://doi.org/10.3390/photonics10020223
Chicago/Turabian StyleMeng, Qingyu, Haiyang Yu, Xiaoyu Jiang, and Xinzhu Sang. 2023. "A Sparse Capture Light-Field Coding Algorithm Based on Target Pixel Matching for a Multi-Projector-Type Light-Field Display System" Photonics 10, no. 2: 223. https://doi.org/10.3390/photonics10020223
APA StyleMeng, Q., Yu, H., Jiang, X., & Sang, X. (2023). A Sparse Capture Light-Field Coding Algorithm Based on Target Pixel Matching for a Multi-Projector-Type Light-Field Display System. Photonics, 10(2), 223. https://doi.org/10.3390/photonics10020223