Spiral Shaped Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Cancer Cell Detection
Abstract
:1. Introduction
2. Biosensor Design and Geometry
3. Results and Discussion
Changes of ± 5% in tg and d for Fabrication Tolerance Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer-World Health Organization (WHO) 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 January 2022).
- Dujon, A.M.; Ujvari, B.; Thomas, F. Cancer risk landscapes: A framework to study cancer in ecosystems. Sci. Total Environ. 2021, 763, 142955. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.P.; Kumar, D.; Chaudhary, V.S.; Murmu, G. Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Opt. 2020, 59, 10321. [Google Scholar] [CrossRef] [PubMed]
- Abdelghaffar, M.; Gamal, Y.; Soliman, W.; Badr, Y.; Hameed, M.F.O.; Obayya, S.S. Early cancer detection by plasmonic pcf sensor. In Proceedings of the 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Politecnico di Torino, Italy, 12–16 September 2022; pp. 147–148. [Google Scholar]
- Wang, J.; Lin, W.; Cao, E.; Xu, X.; Liang, W.; Zhang, X. Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors 2017, 17, 2719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Li, L.; Chen, Z.; Chen, N.; Dai, Z.; Huang, J.; Lu, B. Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor. Chin. Opt. Lett. 2013, 12, S13001. [Google Scholar]
- Chen, C.; Dong, N.; Huang, J.; Wang, Z.; Wang, J. Microscopic optical nonlinearities and transient carrier dynamics in indium selenide nanosheet. Opt. Express 2022, 30, 17967–17979. [Google Scholar] [CrossRef]
- Khetani, A.; Momenpour, A.; Alarcon, E.I.; Anis, H. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced raman scattering (SERS). Biomed. Opt. Express 2015, 6, 4599. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.; Hölzer, P.; Chang, W.; Abdolvand, A.; Travers, J.C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon 2014, 8, 278–286. [Google Scholar] [CrossRef]
- Fang, L.-M.; Chen, H.-M. Double-core D-type photonic crystal fiber refractive indexsensor based on grid coating. Proc. SPIE 2019, 11191, 13. [Google Scholar]
- Mollah, M.A.; Yousufali, M.; Ankan, I.M.; Rahman, M.M.; Sarker, H.; Chakrabarti, K. Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 2020, 29, 100344. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Fatema, S.; Absar, R.; Reja, M.I.; Akhtar, J. Effect of core infiltration in the birefringence of photonic crystal fiber. In Proceedings of the 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 26–28 December 2017; pp. 1–5. [Google Scholar]
- Fatema, S.; Absar, R.; Reja, M.I.; Akhtar, J. Effect of soft glass rod infiltration in the core of photonic crystal fiber. J. Opt. Commun. 2020, 41, 371–383. [Google Scholar] [CrossRef]
- Monro, T.M.; Kiang, K.M.; Lee, J.H.; Frampton, K.; Yusoff, Z.; Moore, R.; Tucknott, J.; Hewak, D.W.; Rutt, H.N.; Richardson, D.J. High nonlinearity extruded single-mode holey optical fibers. In Proceedings of the Optical Fiber Communication Conference and Exhibit, Anaheim, CA, USA, 17–22 March 2002; p. FA1. [Google Scholar]
- Shafkat, A.; Reja, M.I.; Miah, M.J.; Fatema, S.; Absar, R.; Akhtar, J. Numerical exploration of external sensing scheme based photonic crystal fiber surface plasmonic sensor with different noble plasmonic materials and their alloys. Optik 2021, 231, 166418. [Google Scholar] [CrossRef]
- Maidi, A.M.; Yakasai, I.; Abas, P.E.; Nauman, M.M.; Apong, R.A.; Kaijage, S.; Begum, F. Design and simulation of photonic crystal fiber for liquid sensing. Photonics 2021, 8, 16. [Google Scholar] [CrossRef]
- Kalra, S.; Vyas, S.; Tiwari, M.; Ismail, Y.; Yupapin, P.; Ali, J.; Singh, G. Investiga- tion of as2s3-borosilicate chalcogenide glass-based dispersion- engineered photonic crystal fibre for broadband supercontinuum generation in the mid-ir region. J. Mod. Opt. 2020, 67, 920–926. [Google Scholar] [CrossRef]
- Wang, H.; Liao, M.; Xiao, H.; Han, X.; Jiang, Y.; Tan, J.; Zhang, P.; Shao, J.; Tian, Y.; Yang, J. High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure. Opt. Commun. 2021, 481, 126536. [Google Scholar] [CrossRef]
- Rifat, A.A.; Haider, F.; Ahmed, R.; Mahdiraji, G.A.; Adikan, F.M.; Miroshnichenko, A.E. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 2018, 43, 891–894. [Google Scholar] [CrossRef]
- Ramola, A.; Marwaha, A.; Singh, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 2021, 127, 643. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Cheng, T.; Li, S. Photonic crystal fiber SPR liquid sensor based on elliptical detective channel. Micromachines 2021, 12, 408. [Google Scholar] [CrossRef]
- Goodrich, T.T.; Lee, H.J.; Corn, R.M. Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J. Am. Chem. Soc. 2004, 126, 4086–4087. [Google Scholar] [CrossRef]
- Nooke, A.; Beck, U.; Hertwig, A.; Krause, A.; Krüger, H.; Lohse, V.; Negendank, D.; Steinbach, J. On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 2010, 149, 194–198. [Google Scholar] [CrossRef]
- Mouvet, C.; Harris, R.D.; Maciag, C.; Luff, B.J.; Wilkinson, J.S.; Piehler, J.; Brecht, A.; Gauglitz, G.; Abuknesha, R.; Ismail, G. Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 1997, 338, 109–117. [Google Scholar] [CrossRef]
- Eid, M.M.A.; Rashed, A.N.Z.; Bulbul, A.A.M.; Podder, E. Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 2020, 16, 717–727. [Google Scholar] [CrossRef]
- Modeling_And_Simulation_Of_Surface_Plasmonic_Resonance_In_Photonic_Crystal_Fiber. Available online: http://studentsrepo.um.edu.my/8794/ (accessed on 1 March 2022).
- Kashif, M.; Bakar, A.A.A.; Hashim, F.H. Analysing surface plasmon resonance phase sensor based on mach-zehnder interferometer technique using glycerin. Opt. Commun. 2016, 380, 419–424. [Google Scholar] [CrossRef]
- Momota, M.R.; Hasan, M.R. Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 2018, 76, 287–294. [Google Scholar] [CrossRef]
- Wieduwilt, T.; Tuniz, A.; Linzen, S.; Goerke, S.; Dellith, J.; Hübner, U.; Schmidt, M.A. Ultrathin niobium nanofilms on fiber optical tapers—A new route towards low-loss hybrid plasmonic modes. Sci. Rep. 2015, 5, 17060. [Google Scholar] [CrossRef] [Green Version]
- Haque, E.; Mahmuda, S.; Hossain, M.A.; Hai, N.H.; Namihira, Y.; Ahmed, F. Highly sensitive dual-core pcf based plasmonic refractive index sensor for low refractive index detection. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.R.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Shafkat, A.; Rashed, A.N.Z.; El-Hageen, H.M.; Alatwi, A.M. The effects of adding different adhesive layers with a microstructure fiber sensor based on surface plasmon resonance: A numerical study. Plasmonics 2021, 16, 819–832. [Google Scholar] [CrossRef]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, M.; Chen, Y.; Guo, L.; Xiao, G.; Liu, H.; Li, J.; Yuan, L. Highly Sensitive Graphene-Au Coated Plasmon Resonance PCF Sensor. Sensors 2021, 21, 818. [Google Scholar] [CrossRef]
- Rahman, K.M.M.; Alam, M.S.; Islam, M.A. Gold-coated surface plasmon resonance photonic crystal fiber sensor in near-infrared region. Results Opt. 2022, 7, 100223. [Google Scholar] [CrossRef]
- Bourdine, A.V.; Barashkin, A.Y.; Burdin, V.A.; Dashkov, M.V.; Demidov, V.V.; Dukelskii, K.V.; Evtushenko, A.S.; Ismail, Y.; Khokhlov, A.V.; Kuznetsov, A.A.; et al. Twisted silica microstructured optical fiber with equiangular spiral six-ray geometry. Fibers 2021, 9, 27. [Google Scholar] [CrossRef]
- Islam, M.R.; Iftekher, A.N.M.; Hasan, K.R.; Nayen, M.J.; Islam, S.B.; Hossain, A.; Mustafa, Z.; Tahsin, T. Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt. Quantum Electron. 2021, 53, 112. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ahmed, K.; Ahmed, R.; Subbaraman, H.; Abbott, D. Spiral photonic crystal fiber-based dual-polarizedsurface plasmon resonance biosensor. IEEE Sens. J. 2018, 18, 133–140. [Google Scholar] [CrossRef]
- Otupiri, R.; Akowuah, E.K.; Haxha, S. Multi-channel spr biosensor based on pcf for multi-analyte sensing applications. Opt. Express 2015, 23, 15716–15727. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, G.; Yu, Z.; Wang, Q.; Jiang, X. Trapezium-shaped groovephotonic crystal fiber plasmon sensor for low refractive index detection. Sens. Bio-Sens. Res. 2021, 34, 100452. [Google Scholar] [CrossRef]
- Yasli, A. Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 2021, 16, 1605–1612. [Google Scholar] [CrossRef]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Miroshnichenko, A.E. Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B 2018, 35, 2816–2821. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Liu, X.; Feng, Y.; Wang, S.; Shen, T.; Wei, H. Double-sided polishing photonic crystal fiber biosensor based on surface plasmon resonance for cancer single cell detection. J. Opt. Soc. Am. B 2022, 39, 1050–1058. [Google Scholar] [CrossRef]
- Sharma, P.; Sharan, P.; Deshmukh, P. A photonic crystal sensor for analysis and detection of cancer cells. In Proceedings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–5. [Google Scholar]
- Thomson, E.A. Mit Radar Research Used to Treat Breast Cancer Enters Phase Iitrials; Mitnews: Cambridge, MA, USA, 2001. [Google Scholar]
- Ramanujam, N.R.; Amiri, I.S.; Taya, S.A.; Olyaee, S.; Udaiyakumar, R.; PasumponPandian, A.; Wilson, K.S.J.; Mahalakshmi, P.; Yupapin, P.P. Enhanced sensitivity ofcancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 2018, 25, 189–196. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Sharan, P.; Bharadwaj, S.M.; Gudagunti, F.D.; Deshmukh, P. Design and modelling of photonic sensor for cancer cell detection. In Proceedings of the 2014 International Conference on the IMpact of E-Technology on US (IMPETUS), Banglore, India, 10–11 January 2014; pp. 20–24. [Google Scholar]
- Jabin, M.A.; Ahmed, K.; Rana, M.J.; Paul, B.K.; Islam, M.; Vigneswaran, D.; Uddin, M.S. Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Wu, H.; Song, Y.; Sun, M.; Wang, Q. Simulation of High-Performance Surface Plasmon Resonance Sensor Based on D-Shaped Dual Channel Photonic Crystal Fiber for Temperature Sensing. Materials 2022, 16, 37. [Google Scholar] [CrossRef] [PubMed]
- Sarker, H.; Alam, F.; Khan, M.R.; Mollah, M.A.; Hasan, M.L.; Rafi, A.B.M.S. Designing highly sensitive exposed core surface plasmon resonance biosensors. Opt. Mater. Express 2022, 12, 1977–1990. [Google Scholar] [CrossRef]
- Saber, A.M.; Hameed, M.F.O.; El-Azab, J.; Amer, R.Y.; Ismail, T.; Obayya, S.S.A. Plasmonic photonic crystal fiber sensor for optical partial discharge detection. Opt. Quant. Electron. 2022, 54, 433. [Google Scholar] [CrossRef]
- Hossain, M.B.; Mahendiran, T.V.; Abdulrazak, L.F.; Mehedi, I.M.; Hossain, M.A.; Rana, M.M. Numerical analysis of gold coating based quasi d-shape dual core PCF SPR sensor. Opt. Quantum Electron. 2020, 52, 446. [Google Scholar] [CrossRef]
- Mostufa, S.; Akib, T.B.A.; Rana, M.M.; Islam, M.R. Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors 2022, 12, 603. [Google Scholar] [CrossRef]
Type of Cancer | Type of Cell | R.I. of Normal Cell | R.I. of Cancer Affected Cell | References |
---|---|---|---|---|
Skin | Basal | 1.360 | 1.380 | [43,44] |
Breast | MDA-MB-231 | 1.385 | 1.399 | [45,46] |
Breast | MCF-7 | 1.387 | 1.401 | [45,46] |
Blood | Jurkat | 1.376 | 1.390 | [47,48] |
Adrenal Gland | PC12 | 1.381 | 1.395 | [49] |
Cervical | Hela | 1.368 | 1.392 | [49] |
Type of Cancer | Type of Cell | R.I. Change Cell | Resolution | Amplitude Sensitivity (RIU−1) |
---|---|---|---|---|
Skin | Basal | 1.360–1.380 | 2 × 10−5 | −83 |
Breast | MCF-7 | 1.387–1.401 | 2.33 × 10−4 | −154.5 |
Blood | Jurkat | 1.376–1.39 | 1.4 × 10−4 | −165.9 |
Cervical | Hela | 1.368–1.392 | 1.5 × 10−5 | −166.7 |
Adrenal Gland | PC12 | 1.381–1.395 | 1.4 × 10−4 | −245.5 |
Breast | MDA-MB-231 | 1.385–1.399 | 2.33 × 110−4 | −289 |
Wavelength Range (nm) | Sensor’s Design | R.I. Range | Amplitude Sensitivity | Sensor’s Resolution | Ref. |
---|---|---|---|---|---|
480–650 | D-shape | 1.33–1.37 | 216 RIU−1 | 4.6 × 10−5 | [40] |
1080–1560 | Quasi D-shape Dual core Circular lattice | 1.42–1.46 | 230 RIU−1 | NA | [53] |
580–720 | Circular lattice PCF sensor hybrid | 1.33–1.36 | 266 RIU−1 | 3.75 × 10−5 | [54] |
633 | TiO2/Au/graphene layer-based (SPR) | 1.36–1.401 | 292.86 deg/RIU | NA | [55] |
500–620 | Spiral shape | 1.36–1.401 | 289 RIU−1 | 2.33 × 10−4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittal, S.; Saharia, A.; Ismail, Y.; Petruccione, F.; Bourdine, A.V.; Morozov, O.G.; Demidov, V.V.; Yin, J.; Singh, G.; Tiwari, M. Spiral Shaped Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Cancer Cell Detection. Photonics 2023, 10, 230. https://doi.org/10.3390/photonics10030230
Mittal S, Saharia A, Ismail Y, Petruccione F, Bourdine AV, Morozov OG, Demidov VV, Yin J, Singh G, Tiwari M. Spiral Shaped Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Cancer Cell Detection. Photonics. 2023; 10(3):230. https://doi.org/10.3390/photonics10030230
Chicago/Turabian StyleMittal, Shweta, Ankur Saharia, Yaseera Ismail, Francesco Petruccione, Anton V. Bourdine, Oleg G. Morozov, Vladimir V. Demidov, Juan Yin, Ghanshyam Singh, and Manish Tiwari. 2023. "Spiral Shaped Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Cancer Cell Detection" Photonics 10, no. 3: 230. https://doi.org/10.3390/photonics10030230
APA StyleMittal, S., Saharia, A., Ismail, Y., Petruccione, F., Bourdine, A. V., Morozov, O. G., Demidov, V. V., Yin, J., Singh, G., & Tiwari, M. (2023). Spiral Shaped Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Cancer Cell Detection. Photonics, 10(3), 230. https://doi.org/10.3390/photonics10030230