Evaluation of Residual Corneal Stromal Bed Elasticity by Optical Coherence Elastography Based on Acoustic Radiation Force
Abstract
:1. Introduction
2. Measurement System
2.1. Subjects
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehlke, G.L.; Krueger, R.R. Laser vision correction in treating myopia. Asia-Pac. J. Ophthalmol. 2016, 5, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Spadea, L.; Giammaria, D.; Trabucco, P. Corneal wound healing after laser vision correction. Br. J. Ophthalmol. 2016, 100, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortt, A.J.; Bunce, C.; Allan, B.D. Evidence for Superior Efficacy and Safety of LASIK over Photorefractive Keratectomy for Correction of Myopia. Ophthalmology 2006, 113, 1897–1908. [Google Scholar] [CrossRef]
- Swartz, T.; Marten, L.; Wang, M. Measuring the cornea: The latest developments in corneal topography. Curr. Opin. Ophthalmol. 2007, 18, 325–333. [Google Scholar] [CrossRef]
- Fan, R.; Chan, T.C.; Prakash, G.; Jhanji, V. Applications of corneal topography and tomography: A review. Clin. Exp. Ophthalmol. 2018, 46, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Maeda, N. Wavefront technology in ophthalmology. Curr. Opin. Ophthalmol. 2001, 12, 294–299. [Google Scholar] [CrossRef]
- Wilson, S.E.; Mohan, R.R.; Hong, J.-W.; Lee, J.-S.; Choi, R.; Mohan, R.R. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: Elusive control of biological variability and effect on custom laser vision correction. Arch. Ophthalmol. 2001, 119, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Randleman, J.B.; Woodward, M.; Lynn, M.J.; Stulting, R.D. Risk Assessment for Ectasia after Corneal Refractive Surgery. Ophthalmology 2008, 115, 37–50.e4. [Google Scholar] [CrossRef]
- Ou, R.J.; Shaw, E.L.; Glasgow, B.J. Keratectasia after laser in situ keratomileusis (LASIK): Evaluation of the calculated residual stromal bed thickness. Am. J. Ophthalmol. 2002, 134, 771–773. [Google Scholar] [CrossRef]
- Wolle, M.A.; Randleman, J.B.; Woodward, M.A. Complications of refractive surgery: Ectasia after refractive surgery. Int. Ophthalmol. Clin. 2016, 56, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 2005, 31, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Huang, Y.-F.; Wang, L.-Q.; Bai, H.; Wang, Q.; Jiang, J.-J.; Wu, Y.; Gao, M. Corneal Biomechanical Assessment Using Corneal Visualization Scheimpflug Technology in Keratoconic and Normal Eyes. J. Ophthalmol. 2014, 2014, 147516. [Google Scholar] [CrossRef] [Green Version]
- Tanter, M.; Touboul, D.; Gennisson, J.-L.; Bercoff, J.; Fink, M. High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. IEEE Trans. Med. Imaging 2009, 28, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K.C.; Hon, Y.; Leung, L.K.K.; Lam, D.C.C. Repeatability of a novel corneal indentation device for corneal biomechanical measurement. Ophthalmic Physiol. Opt. 2015, 35, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.; Jones, R.; Nguyen, T.; Grazier, J. Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 2007, 40, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Jaycock, P.D.; Lobo, L.; Ibrahim, J.; Tyrer, J.; Marshall, J. Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery. J. Cataract Refract. Surg. 2005, 31, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Last, J.A.; Liliensiek, S.J.; Nealey, P.F.; Murphy, C.J. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J. Struct. Biol. 2009, 167, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin Optical Microscopy for Corneal Biomechanics. Investig. Opthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Rabinstein, A.A.; Whiteman, M.L.; Shebert, R.T. Abnormal diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease following corneal transplantations. Arch. Neurol. 2002, 59, 637–639. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Ford, M.R.; Dupps, W.J., Jr.; Rollins, A.M.; Roy, A.S.; Hu, Z. Method for optical coherence elastography of the cornea. J. Biomed. Opt. 2011, 16, 016005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Kirby, M.A.; Pelivanov, I.; Song, S.; Ambrozinski, L.; Yoon, S.J.; Gao, L.; Li, D.; Shen, T.T.; Wang, R.; O’Donnell, M. Optical coherence elastography in ophthalmology. J. Biomed. Opt. 2017, 22, 121720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaitsev, V.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, Y.; Zhu, Y.; Zhao, Y.; Yang, H.; Liu, G.; Ai, S.; Wang, Y.; Xie, C.; Shi, J.; et al. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography. Exp. Biol. Med. 2022, 247, 462–469. [Google Scholar] [CrossRef]
- Twa, M.D.; Li, J.; Vantipalli, S.; Singh, M.; Aglyamov, S.; Emelianov, S.; Larin, K.V. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed. Opt. Express 2014, 5, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Han, Z.; Wang, S.; Li, J.; Singh, M.; Liu, C.-H.; Aglyamov, S.; Emelianov, S.; Manns, F.; Larin, K.V. Assessing Age-Related Changes in the Biomechanical Properties of Rabbit Lens Using a Coaligned Ultrasound and Optical Coherence Elastography System. Investig. Opthalmol. Vis. Sci. 2015, 56, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Ai, S.; Zhang, Y.; Shi, G.; Wang, Y.; Liu, G.; Han, X.; Zhao, Y.; Yang, H.; He, X. Acoustic radiation forces optical coherence elastography: A preliminary study on biomechanical properties of trabecular meshwork. J. Biophotonics 2023, e202200317. [Google Scholar] [CrossRef]
- Hüter, T. Messung der Ultraschallabsorption in tierischen Geweben und ihre Abhängigkeit von der Frequenz. Naturwissenschaften 1948, 35, 285–287. [Google Scholar] [CrossRef]
- Nelson, T.R.; Fowlkes, J.B.; Abramowicz, J.S.; Church, C.C. Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist. J. Ultrasound Med. 2009, 28, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Hamhaber, U.; Grieshaber, F.; Nagel, J.; Klose, U. Comparison of quantitative shear wave MR-elastography with mechanical compression tests. Magn. Reson. Med. 2003, 49, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Roberts, C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis. J. Cataract Refract. Surg. 2005, 31, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Chen, R.; Chou, L.; Liu, G.; Zhang, J.; Zhou, Q.; Chen, Z. Phase-resolved acoustic radiation force optical coherence elastography. J. Biomed. Opt. 2012, 17, 110505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Li, C.; Chen, S.; Nabi, G.; Huang, Z. Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms. J. Biophotonics 2019, 12, e201800177. [Google Scholar] [CrossRef] [Green Version]
- Garra, B.S. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007, 23, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Manapuram, R.K.; Singh, M.; Menodiado, F.M.; Aglyamov, S.; Emelianov, S.Y.; Twa, M.D.; Larin, K.V. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J. Biomed. Opt. 2013, 18, 121503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhu, J.; Chen, J.J.; Yu, J.; Jin, Z.; Miao, Y.; Browne, A.W.; Zhou, Q.; Chen, Z. Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation. APL Photonics 2019, 4, 106104. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Vesco, C.; Fleming, J.; Choh, V. Density of Ocular Components of the Bovine Eye. Optom. Vis. Sci. 2009, 86, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhou, Y.; Shen, M.; Wang, Y.; Lu, F.; Zhu, D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. J. Biophotonics 2020, 13, e201960074. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Shen, M.; Jin, Z.; Chen, Y.; Zhou, Y.; Qu, J.; Zhu, D. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances. J. Biomed. Opt. 2019, 24, 105001. [Google Scholar] [CrossRef]
- Schallhorn, J.M.; Schallhorn, S.C.; Hettinger, K.; Hannan, S. Infectious keratitis after laser vision correction: Incidence and risk factors. J. Cataract Refract. Surg. 2017, 43, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Melki, S.A.; Azar, D.T. LASIK Complications: Etiology, Management, and Prevention. Surv. Ophthalmol. 2001, 46, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.R.; Smadja, D.; Gomes, B.F.; Mello, G.R.; Monteiro, M.L.; Wilson, S.E.; Randleman, J.B. Association between the Percent Tissue Altered and Post–Laser In Situ Keratomileusis Ectasia in Eyes with Normal Preoperative Topography. Am. J. Ophthalmol. 2014, 158, 87–95.e1. [Google Scholar] [CrossRef] [PubMed]
- Cairns, G.; Ormonde, S.E.; Gray, T.; Hadden, O.B.; Morris, T.; Ring, P.; McGhee, C.N. Assessing the accuracy of Orbscan II post-LASIK: Apparent keratectasia is paradoxically associated with anterior chamber depth reduction in successful procedures. Clin. Exp. Ophthalmol. 2005, 33, 147–152. [Google Scholar] [CrossRef]
- Dias, J.M.; Ziebarth, N.M. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp. Eye Res. 2013, 115, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.; Diakonis, V.F.; Kankariya, V.P.; Yoo, S.H.; Ziebarth, N.M. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp. Eye Res. 2013, 116, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Slade, S.G. Thin-flap laser-assisted in situ keratomileusis. Curr. Opin. Ophthalmol. 2008, 19, 325–329. [Google Scholar] [CrossRef]
- He, M.; Du, Y.; Liu, Q.; Ren, C.; Liu, J.; Wang, Q.; Li, L.; Yu, J. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children. BMC Ophthalmol. 2016, 16, 126. [Google Scholar] [CrossRef] [Green Version]
- Dawson, D.G.; Randleman, J.B.; Grossniklaus, H.E.; O’Brien, T.P.; Dubovy, S.R.; Schmack, I.; Stulting, R.D.; Edelhauser, H.F. Corneal Ectasia after Excimer Laser Keratorefractive Surgery: Histopathology, Ultrastructure, and Pathophysiology. Ophthalmology 2008, 115, 2181–2191.e1. [Google Scholar] [CrossRef]
- Seiler, T.; Koufala, K.; Richter, G. Iatrogenic Keratectasia after Laser in situ Keratomileusis. J. Refract. Surg. 1998, 14, 312–317. [Google Scholar] [CrossRef]
- Hammond, M.D.; Madigan, W.P., Jr.; Bower, K.S. Refractive surgery in the United States Army, 2000–2003. Ophthalmology 2005, 112, 184–190.e2. [Google Scholar] [CrossRef]
- Netto, M.V.; Mohan, R.R.; Ambrósio, R., Jr.; Hutcheon, A.E.; Zieske, J.D.; Wilson, S.E. Wound healing in the cornea: A review of refractive surgery complications and new prospects for therapy. Cornea 2005, 24, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J.; Hammer, C.M.; Rheinlaender, J.; Sel, S.; Scholz, M.; Paulsen, F.; Schäffer, T.E. Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy. PLoS ONE 2014, 9, e88186. [Google Scholar] [CrossRef] [Green Version]
- Asejczyk-Widlicka, M.; Pierscionek, B.K. The elasticity and rigidity of the outer coats of the eye. Br. J. Ophthalmol. 2008, 92, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Pierscionek, B.K.; Asejczyk-Widlicka, M.; Schachar, R.A. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br. J. Ophthalmol. 2007, 91, 801–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Lee, D.; Lee, H.I. The Safety of 250 µm Residual Stromal Bed in Preventing Keratectasia after Laser in situ Keratomileusis (LASIK). J. Korean Med. Sci. 2007, 22, 142–145. [Google Scholar] [CrossRef] [Green Version]
Thickness (μm) | Proportion of the Thickness (%) | Young’s Modulus (kPa) |
---|---|---|
1040.65 | 100% | 11.61 |
753.34 | 72% | 33.78 |
630.02 | 60% | 31.06 |
497.98 | 47% | 52.36 |
308.71 | 29% | 126.38 |
168.05 | 16% | 315.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Shi, G.; Ai, S.; Liu, G.; Han, X.; He, X. Evaluation of Residual Corneal Stromal Bed Elasticity by Optical Coherence Elastography Based on Acoustic Radiation Force. Photonics 2023, 10, 266. https://doi.org/10.3390/photonics10030266
Wang Y, Zhang Y, Shi G, Ai S, Liu G, Han X, He X. Evaluation of Residual Corneal Stromal Bed Elasticity by Optical Coherence Elastography Based on Acoustic Radiation Force. Photonics. 2023; 10(3):266. https://doi.org/10.3390/photonics10030266
Chicago/Turabian StyleWang, Yidi, Yubao Zhang, Gang Shi, Sizhu Ai, Guo Liu, Xiao Han, and Xingdao He. 2023. "Evaluation of Residual Corneal Stromal Bed Elasticity by Optical Coherence Elastography Based on Acoustic Radiation Force" Photonics 10, no. 3: 266. https://doi.org/10.3390/photonics10030266
APA StyleWang, Y., Zhang, Y., Shi, G., Ai, S., Liu, G., Han, X., & He, X. (2023). Evaluation of Residual Corneal Stromal Bed Elasticity by Optical Coherence Elastography Based on Acoustic Radiation Force. Photonics, 10(3), 266. https://doi.org/10.3390/photonics10030266