A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monzón-Hernández, D.; Luna-Moreno, D.; Martínez-Escobar, D. Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sens. Actuators B 2009, 136, 562–566. [Google Scholar] [CrossRef]
- Cao, R.; Wu, J.; Liang, G.; Ohodnicki, P.R.; Chen, K.P. Functionalized PdAu Alloy on Nanocones Fabricated on Optical Fibers for Hydrogen Sensing. IEEE Sens. J. 2019, 20, 1922–1927. [Google Scholar] [CrossRef]
- Dai, J.; Yang, M.; Yu, X.; Cao, K.; Liao, J. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material. Sens. Actuators B 2012, 174, 253–257. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Z.; Dai, J.; Zhang, D. Fiber optic hydrogen sensors with sol–gel WO3 coatings. Sens. Actuators B 2012, 166, 632–636. [Google Scholar] [CrossRef]
- Fan, H.; Ma, W.; Chen, L.; Bao, X. Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing. Opt. Lett. 2020, 45, 3889–3892. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Chen, L.; Bao, X. Chalcogenide microfiber-assisted silica microfiber for ultrasound detection. Opt. Lett. 2020, 45, 1128–1131. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, L.; Sun, L.; Li, J.; Ran, Y.; Guan, B.O. Highly sensitive fiber taper interferometric hydrogen sensors. IEEE Photonics J. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Yan, A.; Chen, R.; Zaghloul, M.; Poole, Z.L.; Ohodnicki, P.; Chen, K.P. Sapphire fiber optical hydrogen sensors for high-temperature environments. IEEE Photonics Technol. Lett. 2015, 28, 47–50. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Cao, R.; Carpenter, D.; Zheng, G.; Rountree, S.D.; Li, M.; Chen, K.P. Multiplexed Fiber Bragg Grating Sensors for In-Pile Measurements in Nuclear Reactor Cores. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022. [Google Scholar]
- Wang, Y.; Yang, M.; Zhang, G.; Dai, J.; Zhang, Y.; Zhuang, Z.; Hu, W. Fiber optic hydrogen sensor based on fabry–perot interferometer coated with Sol-Gel Pt/WO3 coating. J. Light. Technol. 2015, 33, 2530–2534. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, M.; Wang, Y. Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing. Opt. Commun. 2014, 329, 34–37. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Liao, Y.; Tian, Q.; Li, Q.; Zhang, Y.; Zhuang, Z. Extrinsic Fabry–Perot interferometric optical fiber hydrogen detection system. Appl. Opt. 2010, 49, 2736–2740. [Google Scholar] [CrossRef]
- Wang, M.; Zaghloul, M.A.; Huang, S.; Yan, A.; Li, S.; Zou, R.; Ohodnicki, P.; Buric, M.; Li, M.J.; Carpenter, D.; et al. Ultrafast laser enhanced Rayleigh backscattering on silica fiber for distributed sensing under harsh environment. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Cao, R.; Yang, Y.; Wang, M.; Yi, X.; Wu, J.; Huang, S.; Chen, K.P. Multiplexable intrinsic Fabry–Perot interferometric fiber sensors for multipoint hydrogen gas monitoring. Opt. Lett. 2020, 45, 3163–3166. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, M.; Zhao, K.; Huang, S.; Zaghloul, M.A.; Cao, R.; Carpenter, D.; Zheng, G.; Rountree, S.D.; Chen, K.P. Distributed Fiber Sensors with High Spatial Resolution in Extreme Radiation Environments in Nuclear Reactor Cores. J. Light. Technol. 2021, 39, 4873. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors. IEEE Photonics Technol. Lett. 2015, 27, 817–820. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Chen, K.; Wang, E.; Yu, Z.; Yu, Q. A high-resolution dynamic fiber-optic inclinometer. Sens. Actuators A 2018, 283, 305–312. [Google Scholar] [CrossRef]
- Eastman, J.; Thompson, L.; Kestel, B.J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 1993, 48, 84. [Google Scholar] [CrossRef] [PubMed]
- De Ninno, A.; Violante, V.; La Barbera, A. Consequences of lattice expansive strain gradients on hydrogen loading in palladium. Phys. Rev. B 1997, 56, 2417. [Google Scholar] [CrossRef]
- Poole, Z.L.; Ohodnicki, P.; Chen, R.; Lin, Y.; Chen, K.P. Engineering metal oxide nanostructures for the fiber optic sensor platform. Opt. Express 2014, 22, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Ding, H.; Kim, K.J.; Peng, Z.; Wu, J.; Culp, J.T.; Ohodnicki, P.R.; Beckman, E.; Chen, K.P. Metal-organic framework functionalized polymer coating for fiber optical methane sensors. Sens. Actuators B 2020, 324, 128627. [Google Scholar] [CrossRef]
- Cao, R.; Ding, H.; Peng, Z.; Kim, K.J.; Ohodnicki, P.R.; Yan, A.; Chen, K.P. Fiber optical sensor for methane detection based on metal-organic framework/silicone polymer coating. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Wang, M.; Yang, Y.; Huang, S.; Wu, J.; Zhao, K.; Li, Y.; Peng, Z.; Zou, R.; Lan, H.; Ohodnicki, P.R.; et al. Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering. Opt. Express 2020, 28, 20225–20235. [Google Scholar] [CrossRef]
- Li, J.; Hou, C.; Huo, D.; Yang, M.; Fa, H.B.; Yang, P. Development of a colorimetric sensor array for the discrimination of aldehydes. Sens. Actuators B 2014, 196, 10–17. [Google Scholar] [CrossRef]
- Paixão, T.; Araujo, F.; Antunes, P. High-resolution strain and temperature Fabry-Perot interferometer sensor based on Vernier effect and produced by a femtosecond laser. In Proceedings of the Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 1–4 October 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Wu, J.; Yang, Y.; Wang, M.; Li, Y.; Chen, K.P. A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics 2023, 10, 284. https://doi.org/10.3390/photonics10030284
Cao R, Wu J, Yang Y, Wang M, Li Y, Chen KP. A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics. 2023; 10(3):284. https://doi.org/10.3390/photonics10030284
Chicago/Turabian StyleCao, Rongtao, Jingyu Wu, Yang Yang, Mohan Wang, Yuqi Li, and Kevin P. Chen. 2023. "A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber" Photonics 10, no. 3: 284. https://doi.org/10.3390/photonics10030284
APA StyleCao, R., Wu, J., Yang, Y., Wang, M., Li, Y., & Chen, K. P. (2023). A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics, 10(3), 284. https://doi.org/10.3390/photonics10030284