Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods
Abstract
:1. Introduction
1.1. The Bandwidth Demand
1.2. Connectivity in Short-Reach
1.3. Bridging the Gap: Balancing Cost and Performance with Self-Coherent Technology
2. Electronic Dispersion Compensation
3. Self-Coherent Transceivers
3.1. Single-Side-Band Modulation
- Utilizing two DACs to create both the phase and amplitude of a complex-valued SSB signal, for the dual modulation of a directly modulated laser (DML) integrated with a electroabsorption modulator (EAM) [45], as depicted in Figure 5d. The former acts as a phase modulator with a strong chirp effect, while the latter acts as an intensity modulator [46].
3.2. Kramers-Kronig Receiver
4. Phase Retrieval Algorithms
4.1. Transport of Intensity Equation (TIE)
4.2. Gerchberg-Saxton (GS) Algorithm
4.2.1. Carrier-Less GS Phase Retrieval
4.2.2. Carrier-Assisted GS Phase Retrieval
5. Carrier-Assisted Differential Detection
6. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023); White Paper; Cisco Systems: San Jose, CA, USA, 2022.
- Union, I. IMT Traffic Estimates for the Years 2020 to 2030. Rep. ITU 2015, 2370. Available online: https://www.itu.int/pub/R-REP-M.2370 (accessed on 20 January 2023).
- Banafaa, M.; Shayea, I.; Din, J.; Hadri Azmi, M.; Alashbi, A.; Ibrahim Daradkeh, Y.; Alhammadi, A. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex. Eng. J. 2023, 64, 245–274. [Google Scholar] [CrossRef]
- Cole, C. Beyond 100G client optics. IEEE Commun. Mag. 2012, 50, s58–s66. [Google Scholar] [CrossRef]
- Alimi, I.; Patel, R.; Silva, N.; Sun, C.; Ji, H.; Shieh, W.; Pinto, A.; Muga, N. A Review of Self-Coherent Optical Transceivers: Fundamental Issues, Recent Advances, and Research Directions. Appl. Sci. 2021, 11, 7554. [Google Scholar] [CrossRef]
- Chagnon, M. Optical Communications for short-reach. J. Light. Technol. 2019, 37, 1779–1797. [Google Scholar] [CrossRef]
- IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force. Available online: www.ieee802.org/3/bs/ (accessed on 20 July 2019).
- Sun, H.; Torbatian, M.; Karimi, M.; Maher, R.; Thomson, S.; Tehrani, M.; Gao, Y.; Kumpera, A.; Soliman, G.; Kakkar, A.; et al. 800G DSP ASIC Design Using Probabilistic Shaping and Digital Sub-Carrier Multiplexing. J. Light. Technol. 2020, 38, 4744–4756. [Google Scholar] [CrossRef]
- Pang, X.; Ozolins, O.; Gaiarin, S.; Olmedo, M.I.; Schatz, R.; Westergren, U.; Zibar, D.; Popov, S.; Jacobsen, G. Evaluation of High-Speed EML-based IM/DD links with PAM Modulations and Low-Complexity Equalization. In Proceedings of the ECOC 2016, 42nd European Conference on Optical Communication, Dusseldorf, Germany, 18–22 September 2016; pp. 1–3. [Google Scholar]
- Karar, A.S. Gerchberg-Saxton Based FIR Filter for Electronic Dispersion Compensation in IM/DD Transmission Part I: Theory and Simulation. J. Light. Technol. 2022, 41, 1335–1345. [Google Scholar] [CrossRef]
- Xin, H.; Zhang, K.; Kong, D.; Zhuge, Q.; Fu, Y.; Jia, S.; Hu, W.; Hu, H. Nonlinear Tomlinson-Harashima precoding for direct-detected double sideband PAM-4 transmission without dispersion compensation. Opt. Express 2019, 27, 19156–19167. [Google Scholar] [CrossRef]
- Rath, R.; Clausen, D.; Ohlendorf, S.; Pachnicke, S.; Rosenkranz, W. Tomlinson–Harashima Precoding For Dispersion Uncompensated PAM-4 Transmission With Direct-Detection. J. Light. Technol. 2017, 35, 3909–3917. [Google Scholar] [CrossRef]
- Gao, Y.; Cartledge, J.C.; Kashi, A.S.; Yam, S.S.H.; Matsui, Y. 112 Gb/s Single-Carrier PAM-4 Using a Directly Modulated Laser. In Proceedings of the Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF); Optica Publishing Group: Washington, DC, USA, 2016; p. SpM2E.2. [Google Scholar] [CrossRef]
- Tang, X.; Qiao, Y.; Chen, Y.W.; Lu, Y.; Chang, G.K. Digital Pre- and Post-Equalization for C-Band 112-Gb/s PAM4 Short-Reach Transport Systems. J. Light. Technol. 2020, 38, 4683–4690. [Google Scholar] [CrossRef]
- Wettlin, T.; Ohlendorf, S.; Rahman, T.; Wei, J.; Calabrò, S.; Stojanovic, N.; Pachnicke, S. Beyond 200 Gb/s PAM4 transmission using Tomlinson-Harashima precoding. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ros, F.D.; Ranzini, S.M.; Dischler, R.; Cem, A.; Aref, V.; Bülow, H.; Zibar, D. Machine-learning-based equalization for short-reach transmission: Neural networks and reservoir computing. In Proceedings of the Metro and Data Center Optical Networks and Short-Reach Links IV; International Society for Optics and Photonics; Srivastava, A.K., Glick, M., Akasaka, Y., Eds.; SPIE: Bellingham, WA, USA, 2021; Volume 11712, pp. 1–8. [Google Scholar] [CrossRef]
- Xiang, M.; Xing, Z.; El-Fiky, E.; Morsy-Osman, M.; Zhuge, Q.; Plant, D.V. Single-Lane 145 Gbit/s IM/DD Transmission With Faster-Than-Nyquist PAM4 Signaling. IEEE Photonics Technol. Lett. 2018, 30, 1238–1241. [Google Scholar] [CrossRef]
- Yu, Y.; Choi, M.R.; Bo, T.; He, Z.; Che, Y.; Kim, H. Low-Complexity Second-Order Volterra Equalizer for DML-Based IM/DD Transmission System. J. Light. Technol. 2020, 38, 1735–1746. [Google Scholar] [CrossRef]
- Stojanovic, N.; Karinou, F.; Qiang, Z.; Prodaniuc, C. Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications. J. Light. Technol. 2017, 35, 4583–4594. [Google Scholar] [CrossRef]
- Diamantopoulos, N.P.; Nishi, H.; Kobayashi, W.; Takeda, K.; Kakitsuka, T.; Matsuo, S. On the Complexity Reduction of the Second-Order Volterra Nonlinear Equalizer for IM/DD Systems. J. Light. Technol. 2019, 37, 1214–1224. [Google Scholar] [CrossRef]
- Zhang, W.; Ge, L.; Zhang, Y.; Liang, C.; He, Z. Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability. Sensors 2020, 20, 4680. [Google Scholar] [CrossRef]
- Reza, A.G.; Troncoso-Costas, M.; Browning, C.; Diaz-Otero, F.J.; Barry, L.P. Single-Lane 54-Gbit/s PAM-4/8 Signal Transmissions Using 10G-Class Directly Modulated Lasers Enabled by Low-Complexity Nonlinear Digital Equalization. IEEE Photonics J. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Randel, S.; Chandrasekhar, S.; Liu, X. Maximum likelihood sequence estimation for short-reach optical communications. Opt. Express 2008, 16, 8714–8722. [Google Scholar]
- Tychopoulos, A.; Koufopavlou, O.; Tomkos, I. FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications. IEEE Circuits Devices Mag. 2006, 22, 79–86. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, W.; Li, S.; Gu, M. FIR filter-based electronic dispersion compensation for coherent optical systems. Opt. Express 2017, 25, 13584–13590. [Google Scholar]
- Zhang, W.; Chen, R.; Li, D.; Li, S.; Gu, M. Dual-parallel Mach-Zehnder modulator with high extinction ratio and low drive voltage. Opt. Express 2007, 15, 3240–3244. [Google Scholar]
- Wang, X.; Chen, R.; Li, S.; Gu, M. Dual-drive Mach-Zehnder modulator with improved linearity and reduced drive voltage. Opt. Express 2015, 23, 31107–31114. [Google Scholar]
- Betts, G.; Cartledge, J. Overview of optical modulators and the properties that affect transmission system performance. In Broadband Optical Modulators: Science, Technology, and Applications; Chen, A., Murphy, E., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Savory, S.J.; Gavioli, G.; Killey, R.I.; Bayvel, P. Electronic compensation of chromatic dispersion using a digital coherent receiver. Opt. Express 2007, 15, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.; Fougstedt, C.; Amat, A.G.i.; Johannisson, P.; Larsson-Edefors, P.; Karlsson, M. Dispersion Compensation FIR Filter With Improved Robustness to Coefficient Quantization Errors. J. Light. Technol. 2016, 34, 5110–5117. [Google Scholar] [CrossRef]
- Jannson, T. Real-time Fourier transformation in dispersive optical fibers. Opt. Lett. 1983, 8, 232–234. [Google Scholar] [CrossRef]
- Savory, S.J. Digital filters for coherent optical receivers. Opt. Express 2008, 16, 804–817. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers–Kronig coherent receiver. Optica 2016, 3, 1220–1227. [Google Scholar] [CrossRef]
- Che, D.; Li, A.; Chen, X.; Hu, Q.; Wang, Y.; Shieh, W. Stokes vector direct detection for linear complex optical channels. J. Light. Technol. 2015, 33, 678–684. [Google Scholar] [CrossRef]
- Shieh, W.; Sun, C.; Ji, H. Carrier-assisted differential detection. Light Sci. Appl. 2020, 9, 18. [Google Scholar] [CrossRef]
- Li, X.; O’Sullivan, M.; Xing, Z.; Alam, M.; Mousa-Pasandi, M.E.; Plant, D.V. Asymmetric self-coherent detection. Opt. Exp. 2021, 29, 25412–25427. [Google Scholar] [CrossRef]
- Chen, X.; Antonelli, C.; Chandrasekhar, S.; Raybon, G.; Mecozzi, A.; Shtaif, M.; Winzer, P. Kramers–Kronig Receivers for 100-km Datacenter Interconnects. J. Light. Technol. 2018, 36, 79–89. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Hu, W. Carrier-Assisted Phase Retrieval. J. Light. Technol. 2022, 40, 5583–5596. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Zhang, X.; Ong, C. Single-Sideband Generation Using a Dual-Drive Mach-Zehnder Modulator with a Phase-Locked Loop. IEEE Photonics Technol. Lett. 2008, 20, 268–270. [Google Scholar]
- Wang, X.; Liu, X.; Zhang, X. Generation of Single-Sideband Signals Using an IQ Modulator and a Phase-Locked Loop. IEEE Photonics Technol. Lett. 2007, 19, 787–789. [Google Scholar]
- Liu, X.; Wang, X.; Zhang, X.; Ong, C. A Stable Single-Sideband Generation Method Using an IQ Modulator and a Phase-Locked Loop. IEEE Photonics Technol. Lett. 2008, 20, 914–916. [Google Scholar]
- Liu, X.; Wang, X.; Zhang, X. Generation of Quasi-Single-Sideband Signals Using a Single-Drive Mach-Zehnder Modulator and an Optical Filter. Chin. Phys. Lett. 2007, 24, 3143–3145. [Google Scholar]
- Wang, X.; Liu, X.; Zhang, X. Quasi-Single-Sideband Generation Using a Single-Drive Mach-Zehnder Modulator and a Bandpass Filter. IEEE Photonics Technol. Lett. 2007, 19, 1–3. [Google Scholar]
- Wang, X.; Liu, X.; Zhang, X. Single-Sideband Generation Using a Single-Drive Mach-Zehnder Modulator and a Bandpass Filter. IEEE Photonics Technol. Lett. 2006, 18, 2457–2459. [Google Scholar]
- Bo, T.; Kim, H.; Tan, Z.; Dong, Y. Optical Single-Sideband Transmitters. J. Light. Technol. 2023, 41, 1163–1174. [Google Scholar] [CrossRef]
- Kim, H. EML-Based Optical Single Sideband Transmitter. IEEE Photonics Technol. Lett. 2008, 20, 243–245. [Google Scholar] [CrossRef]
- De Laer Kronig, R. On the Theory of Dispersion of X-rays. J. Opt. Soc. Am. 1926, 12, 547–557. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers-Kronig receivers. Adv. Opt. Photonics 2019, 11, 480–517. [Google Scholar] [CrossRef]
- Chen, X.; Chandrasekhar, S.; Winzer, P. Self-Coherent Systems for short-reach Transmission. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Antonelli, C.; Mecozzi, A.; Shtaif, M. Kramers-Kronig PAM transceiver and twosided polarization-multiplexed Kramers-Kronig transceiver. J. Light. Technol. 2018, 36, 468–475. [Google Scholar] [CrossRef]
- Mecozzi, A. A necessary and sufficient condition for minimum phase and implications for phase retrieval. arXiv 2016, arXiv:1606.04861. [Google Scholar]
- Schuh, K.; Le, S.T. 180 Gb/s 64QAM transmission over 480 km using a DFB laser and a Kramers-Kronig receiver. In Proceedings of the European Conference on Optical Communication, Rome, Italy, 23–27 September 2018; p. P.4.12. [Google Scholar]
- Presi, M.; Cossu, G.; Contestabile, G.; Ciaramella, E.; Mecozzi, A.; Shraif, M. Transmission in 125-km SMF with 3.9 bit/s/Hz spectral efficiency using a single-drive MZM and a direct-detection Kramers-Kronig receiver without optical CD compensation. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. Tu2D.3. [Google Scholar]
- Zhu, M.; Zhang, J.; Ying, H.; Li, X.; Luo, M.; Huang, X.; Song, Y.; Li, F.; Yi, X.; Qiu, K. 56-Gb/s optical SSB PAM-4 transmission over 800-km SSMF using DDMZM transmitter and simplified direct detection Kramers-Kronig receiver. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. M2C.5. [Google Scholar]
- Randel, S.; Pilori, D.; Chandrasekhar, S.; Raybon, G.; Winzer, P. 100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme. In Proceedings of the European Conference on Optical Communication, Valencia, Spain, 27 September–1 October 2015; p. 697. [Google Scholar]
- Voelcker, H. Demodulation of single-sideband signals via envelope detection. IEEE Trans. Commun. Technol. 1966, 14, 22–30. [Google Scholar] [CrossRef]
- Füllner, C.; Adib, M.M.H.; Wolf, S.; Kemal, J.N.; Freude, W.; Koos, C.; Randel, S. Complexity Analysis of the Kramers–Kronig Receiver. J. Light. Technol. 2019, 37, 4295–4307. [Google Scholar] [CrossRef]
- Li, Z.; Sezer Erkılınç, M.; Shi, K.; Sillekens, E.; Galdino, L.; Xu, T.; Thomsen, B.C.; Bayvel, P.; Killey, R.I. Digital Linearization of Direct-Detection Transceivers for Spectrally Efficient 100 Gb/s/λ WDM Metro Networking. J. Light. Technol. 2018, 36, 27–36. [Google Scholar] [CrossRef]
- Bo, T.; Kim, H. Kramers-Kronig receiver operable without digital upsampling. Opt. Express 2018, 26, 13810–13818. [Google Scholar] [CrossRef]
- Li, Z.; Erkilinç, M.S.; Shi, K.; Sillekens, E.; Galdino, L.; Xu, T.; Thomsen, B.C.; Bayvel, P.; Killey, R.I. Spectrally Efficient 168 Gb/s/λ WDM 64-QAM Single-Sideband Nyquist-Subcarrier Modulation With Kramers–Kronig Direct-Detection Receivers. J. Lightwave Technol. 2018, 36, 1340–1346. [Google Scholar] [CrossRef]
- Shu, L.; Li, J.; Wan, Z.; Yu, Z.; Li, X.; Luo, M.; Fu, S.; Xu, K. Single-photodiode 112-Gbit/s 16-QAM transmission over 960-km SSMF enabled by Kramers-Kronig detection and sparse I/Q Volterra filter. Opt. Express 2018, 26, 24564–24576. [Google Scholar] [CrossRef]
- Sun, C.; Che, D.; Ji, H.; Shieh, W. Study of Chromatic Dispersion Impacts on Kramers–Kronig and SSBI Iterative Cancellation Receiver. IEEE Photonics Technol. Lett. 2019, 31, 303–306. [Google Scholar] [CrossRef]
- Li, A.; Peng, W.R.; Cui, Y.; Bai, Y. 112GBd Virtual-carrier-assisted Single-Sideband PAM4 with Kramers-Kronig Detection and Blind Adaptive IQ Imbalance Compensation. In Proceedings of the Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, 3–7 March 2019; p. 1. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Zou, D.; Ni, W.; Luo, D.; Li, F. Real-Valued Neural Network Nonlinear Equalization for Long-Reach PONs Based on SSB Modulation. IEEE Photonics Technol. Lett. 2023, 35, 167–170. [Google Scholar] [CrossRef]
- Le, S.T.; Schuh, K.; Dischler, R.; Buchali, F.; Schmalen, L.; Buelow, H. Beyond 400 Gb/s Direct Detection Over 80 km for Data Center Interconnect Applications. J. Light. Technol. 2020, 38, 538–545. [Google Scholar] [CrossRef]
- Fang, X.; Chen, X.; Yang, F.; Zhang, L.; Zhang, F. 6.4Tb/s SSB WDM Transmission Over 320km SSMF With Linear Network-Assisted LSTM. IEEE Photonics Technol. Lett. 2021, 33, 1407–1410. [Google Scholar] [CrossRef]
- Nugent, K.; Paganin, D.; Gureyev, T. A phase odyssey. Phys. Today 2001, 54, 27–32. [Google Scholar] [CrossRef]
- Gerchberg, R.; Saxton, W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Matsumoto, M. Optical Signal Phase Reconstruction Based on Temporal Transport-of-Intensity Equation. J. Light. Technol. 2020, 38, 4722–4729. [Google Scholar] [CrossRef]
- Cuadrado-Laborde, C.; Carrascosa, A.; Pérez-Millán, P.; Díez, A.; Cruz, J.; Andres, M. Phase recovery by using optical fiber dispersion. Opt. Lett. 2014, 39, 598–601. [Google Scholar] [CrossRef]
- Cuadrado-Laborde, C.; Brotons-Gisbert, M.; Serafino, G.; Bogoni, A.; Pérez-Millán, P.; Andrés, M. Phase recovery by using optical fiber dispersion and pulse pre-stretching. Appl. Phys. B 2014, 117, 1173–1181. [Google Scholar] [CrossRef]
- Karar, A.S. Iterative Algorithm for Electronic Dispersion Compensation in IM/DD Systems. J. Light. Technol. 2020, 38, 698–704. [Google Scholar] [CrossRef]
- Goeger, G.; Prodaniuc, C.; Ye, Y.; Zhang, Q. Transmission of intensity modulation-direct detection signals far beyond the dispersion limit enabled by phase-retrieval. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Wu, X.; Karar, A.S.; Zhong, K.; Lau, A.P.T.; Lu, C. Experimental demonstration of pre-electronic dispersion compensation in IM/DD systems using an iterative algorithm. Opt. Express 2021, 29, 24735–24749. [Google Scholar] [CrossRef]
- Zou, D.; Li, F.; Wang, W.; Yin, M.; Sui, Q.; Li, Z. Modified Gerchberg-Saxton Algorithm Based Electrical Dispersion Pre-Compensation for Intensity-modulation and Direct-detection Systems. J. Light. Technol. 2022, 40, 2840–2849. [Google Scholar] [CrossRef]
- Zou, D.; Wang, W.; Yin, M.; Sui, Q.; Li, Z.; Li, F. Performance Enhanced Gerchberg-Saxton Algorithm Based Electrical Dispersion Pre-compensation for Intensity-Modulation and Direct-Detection System. In Proceedings of the Asia Communications and Photonics Conference 2021, Shanghai, China, 24–27 October 2021; p. 1. [Google Scholar] [CrossRef]
- Yin, M.; Zou, D.; Wang, W.; Li, F.; Li, Z. Transmission of a 56-Gbit/s PAM4 signal with low-resolution DAC and pre-equalization only over 80 km fiber in C-band IM/DD systems for optical interconnects. Opt. Lett. 2021, 46, 5615–5618. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, J.; Tang, J.; Jin, W.; Giddings, R.; Qiu, K. Data-Aided Iterative Algorithms for Linearizing IM/DD Optical Transmission Systems. J. Light. Technol. 2021, 39, 2864–2872. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, J.; Tang, J.; Jin, T.; Jin, W.; Liu, Q.; Zhong, Z.; Giddings, R.; Hong, Y.; Xu, B.; et al. Multi-constraint Gerchberg-Saxton iteration algorithms for linearizing IM/DD transmission systems. Opt. Express 2022, 30, 10019–10031. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Jin, W.; Zhong, Z.; Jiang, S.; Rajbhandari, S.; Hong, Y.; Philip Giddings, R.; Tang, J. Error-Controlled Iterative Algorithms for Digital Linearization of IMDD-Based Optical Fibre Transmission Systems. J. Light. Technol. 2022, 40, 6158–6167. [Google Scholar] [CrossRef]
- Wu, X.; Karar, A.S.; Zhong, K.; Gürkan, Z.N.; Lau, A.P.T.; Lu, C. Gerchberg-Saxton Based FIR Filter for Electronic Dispersion Compensation in IM/DD Transmission Part II: Experimental Demonstration and Analysis. J. Light. Technol. 2023, 41, 1428–1435. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Fontaine, N.K.; Ryf, R. Phase retrieval with fast convergence employing parallel alternative projections and phase reset for coherent communications. Opt. Lett. 2020, 45, 1188–1191. [Google Scholar] [CrossRef]
- Chen, H.; Fontaine, N.K.; Gené, J.M.; Ryf, R.; Neilson, D.T.; Raybon, G. Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Xiang, M.; Zhou, P.; Ye, B.; Fu, S.; Xu, O.; Li, J.; Peng, D.; Wang, Y.; Qin, Y. Adaptive intensity transformation-based phase retrieval with high accuracy and fast convergence. Opt. Lett. 2021, 46, 3215–3218. [Google Scholar] [CrossRef]
- Ji, H.; Sun, M.; Sun, C.; Shieh, W. Carrier-assisted differential detection with a generalized transfer function. Opt. Express 2020, 28, 35946–35959. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Fu, Y.; Hu, W. Symmetric carrier-assisted differential detection receiver with low-complexity signal-signal beating interference mitigation. Opt. Express 2020, 28, 19008–19022. [Google Scholar] [CrossRef]
- Che, D.; Sun, C.; Shieh, W. Optical Field Recovery in Stokes Space. J. Light. Technol. 2019, 37, 451–460. [Google Scholar] [CrossRef]
- Chen, H.; Fontaine, N.K.; Essiambre, R.J.; Huang, H.; Mazur, M.; Ryf, R.; Neilson, D.T. Space-Time Diversity Phase Retrieval Receiver. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
Distance (km) | Data-Rate (Gbps) | Modulation | CSPR (dB) | Optimum Launch Power (dBm) | Comments | Ref. |
---|---|---|---|---|---|---|
100 | 220 | 32-QAM | 9 | 2 | Single diode, Single channel, Single polarization | [37] |
240 | 112 | 16-QAM | 11 | 2.5 | WDM DD SSB, Nyquist-SCM | [58] |
300 | 267 | 16-QAM | - | - | - | [57] |
80 | 112 | OFDM 16-QAM | 10 | 7 | - | [59] |
80 | 168 | 64-QAM | 12 | 2 | WDM | [60] |
960 | 112 | 4-PAM | 12 | 5 | WDM | [61] |
160 | 80 | OFDM | 8 | - | - | [62] |
80 | 224 | 4-PAM | - | - | VC-SSB | [63] |
80 | 120 | 16-QAM | 12 | 10 | w/o amplification, w/NN NLE | [64] |
80 | 400 | 64-QAM | 14–16 | 8–9 | SSB DD | [65] |
320 | 200 | 4-PAM | 11 | 4 | SSB-LN-LSTM, WDM (32 channels) | [66] |
Scheme | Tx BW (GHz) | Key Optical Devices | # of ADC | # of PD | Rx BW (GHz) | OSNR Penalty (dB) | CSPR (dB) | Ref. |
---|---|---|---|---|---|---|---|---|
SP - Full Coherent | B/2 | Optical hybrid | 2 | 2 BPDs | B/2+F | - | - | - |
KK | B/2 | - | 1 | SPD | B | 7.3 | 6 | [33] |
SVR | B/2 | Optical Hybrid, 2 Couplers (1 × 2), PBS | 3 | 3 BPDs | B/2 | 6 | 0 | [34] |
SVR | B/2 | 2 Couplers (1 × 2, 3 × 3), PBS | 4 | 4 BPDs | B/2 | 6 | 0 | [87] |
STD-PR | B/2 | 2 Couplers (1 × 4, 3 × 3), Dispersive Element, 2 ODLs | 4 | 4 BPDs | B | 2 | - | [88] |
CADD | B/2+G | Optical Hybrid, 2 Couplers (1 × 2), ODL | 3 | 2 BPDs, SPD | B/2+G | 14 | 10 | [35] |
ECA-PR | B/2 | Dispersive Element + Coupler (1 × 2) | 2 | 2 SPDs | B | 3.8 | −1 | [38] |
CCA-PR | B/2 + G | B | 5.5 | 1 | [38] | |||
TIE | B/2 + G | >B | 10.3 | 11 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karar, A.S.; Falou, A.R.E.; Barakat, J.M.H.; Gürkan, Z.N.; Zhong, K. Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods. Photonics 2023, 10, 308. https://doi.org/10.3390/photonics10030308
Karar AS, Falou ARE, Barakat JMH, Gürkan ZN, Zhong K. Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods. Photonics. 2023; 10(3):308. https://doi.org/10.3390/photonics10030308
Chicago/Turabian StyleKarar, Abdullah S., Abdul Rahman El Falou, Julien Moussa H. Barakat, Zeynep Nilhan Gürkan, and Kangping Zhong. 2023. "Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods" Photonics 10, no. 3: 308. https://doi.org/10.3390/photonics10030308
APA StyleKarar, A. S., Falou, A. R. E., Barakat, J. M. H., Gürkan, Z. N., & Zhong, K. (2023). Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods. Photonics, 10(3), 308. https://doi.org/10.3390/photonics10030308