Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contributions
2. Proposed Design
3. Results and Discussion
3.1. Influence of FWM, Dispersion and Interference
3.2. Power Budget (PB) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zentani, A.; Zulkifli, N.; Ramli, A. Network Resiliency and Fiber Usage of Tree, Star, Ring and Wheel Based Wavelength Division Multiplexed Passive Optical Network Topologies: A Comparative Review. Opt. Fiber Technol. 2022, 73, 103038. [Google Scholar] [CrossRef]
- Róka, R.; Fujdiak, R.; Holasova, E.; Kuchar, K.; Orgon, M.; Misurec, J. Protection Schemes in HPON Networks Based on the PWFBA Algorithm. Sensors 2022, 22, 9885. [Google Scholar] [CrossRef] [PubMed]
- Bindhaiq, S.; Supa’At, A.S.M.; Zulkifli, N.; Mohammad, A.B.; Shaddad, R.Q.; Elmagzoub, M.A.; Faisal, A. Recent Development on Time and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for next-Generation Passive Optical Network Stage 2 (NG-PON2). Opt. Switch. Netw. 2015, 15, 53–66. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, R.; Sheetal, A. Passive Optical Network Evolution to Next Generation Passive Optical Network: A Review. In Proceedings of the 2018 6th Edition of International Conference on Wireless Networks and Embedded Systems, WECON 2018—Proceedings, Punjab, India, 16–17 November 2018; pp. 102–107. [Google Scholar]
- Gong, Y.; Gan, C.; Wu, C.; Wang, R. Novel Ring-Based WDM-PON Architecture with High-Reliable Remote Nodes. Telecommun. Syst. 2014, 57, 327–335. [Google Scholar] [CrossRef]
- Yeh, C.H.; Shih, F.-Y.; Chang, G.-K.; Chi, S. Reliable Tree-Type Passive Optical Networks with Self-Restorable Apparatus. Opt. Express 2008, 16, 4494. [Google Scholar] [CrossRef]
- Bulu, I.; Caglayan, H. Designing Materials With Desired. Microw. Opt. 2006, 48, 2611–2615. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S. A Hybrid WDM Ring–Tree Topology Delivering Efficient Utilization of Bandwidth over Resilient Infrastructure. Photonic Netw. Commun. 2018, 35, 325–334. [Google Scholar] [CrossRef]
- Bala, A.; Dewra, S. Efficient Routing of Star-Ring Hybrid Topology with Optical Add and Drop Multiplexer in DWDM System. J. Opt. Commun. 2016, 37, 395–400. [Google Scholar] [CrossRef]
- Rani, A.; Dewra, S. Performance of Bus and Ring Network Topologies Based on SOA Bias Current. J. Opt. Commun. 2017, 38, 277–280. [Google Scholar] [CrossRef]
- Garg, A.K.; Janyani, V.; Batagelj, B.; Zainol Abidin, N.H.; Abu Bakar, M.H. Hybrid FSO/Fiber Optic Link Based Reliable & Energy Efficient WDM Optical Network Architecture. Opt. Fiber Technol. 2021, 61, 102422. [Google Scholar] [CrossRef]
- Kumar Garg, A.; Janyani, V.; Batagelj, B. Ring Based Latency-Aware and Energy-Efficient Hybrid WDM TDM-PON with ODN Interconnection Capability for Smart Cities. Opt. Fiber Technol. 2020, 58, 102242. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Jiang, S.-Y.; Hsieh, S.-E.; Yeh, C.-H.; Lai, Y.-T.; Chen, L.-Y.; Liaw, S.-K.; Chow, C.-W. Hybrid Self-Protected Fiber-FSO WDM-PON System with Fiber Breakage Prevention. Photonics 2022, 9, 822. [Google Scholar] [CrossRef]
- Vidmar, M. Optical-Fiber Communications: Cite Components and Systems. Inf. Midem Ljubljana 2001, 31, 246–251. [Google Scholar]
- Batagelj, B.; Janyani, V.; Tomažič, S. Research Challenges in Optical Communications towards 2020 and Beyond. Inf. MIDEM 2014, 44, 177–184. [Google Scholar]
- Uzunidis, D.; Logothetis, M.; Stavdas, A.; Hillerkuss, D.; Tomkos, I. Fifty Years of Fixed Optical Networks Evolution: A Survey of Architectural and Technological Developments in a Layered Approach. Telecom 2022, 3, 619–674. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Z.; Zhu, H.; Shen, L.; Mo, S.; Li, Z.; Zhang, J.; Zhang, J.; Lan, X.; Liu, J.; et al. 1120-Channel OAM-MDM-WDM Transmission over a 100-Km Single-Span Ring-Core Fiber Using Low-Complexity 4×4 MIMO Equalization. Opt. Express 2022, 30, 18199. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, S.; Nair, N.; Bhatia, K.S. Investigation of WDM-MDM PON Employing Different Modulation Formats. Optik 2022, 257, 168855. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Zhu, P.; Wu, Z.; Zhou, P.; Tian, Y.; Ren, F.; Yu, J.; Ge, D.; Chen, J.; et al. Novel MDM-PON Scheme Utilizing Self-Homodyne Detection for High-Speed/Capacity Access Networks. Opt. Express 2015, 23, 32054. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Zhou, P.; Zhu, P.; Tian, Y.; Wu, Z.; Zhu, J.; Liu, K.; Ge, D.; Chen, J.; et al. MDM-TDM PON Utilizing Self-Coherent Detection-Based OLT and RSOA-Based ONU for High Power Budget. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Hu, T.; Li, J.; Ren, F.; Tang, R.; Yu, J.; Mo, Q.; Ke, Y.; Du, C.; Liu, Z.; He, Y.; et al. Demonstration of Bidirectional PON Based on Mode Division Multiplexing. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; Volume 28, pp. 564–567. [Google Scholar] [CrossRef]
- Hu, T.; Li, J.; Zhang, Y.; Li, Z.; He, Y.; Chen, Z. Wavelength-Insensitive Weakly Coupled FMFs and Components for the MDM-GPON. IEEE Photonics Technol. Lett. 2018, 30, 1277–1280. [Google Scholar] [CrossRef]
- Ren, F.; Li, J.; Hu, T.; Tang, R.; Yu, J.; Mo, Q.; He, Y.; Chen, Z.; Li, Z. Cascaded Mode-Division-Multiplexing and Time-Division-Multiplexing Passive Optical Network Based on Low Mode-Crosstalk FMF and Mode MUX/DEMUX. IEEE Photonics J. 2015, 7. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, B.; Mao, Y.; Ren, J.; Ullah, R.; Chen, S.; Wu, X.; Bai, Y.; Song, X.; Tang, R.; et al. Chaotic Power Division Multiplexing for Secure Optical Multiple Access. J. Light. Technol. 2022, 40, 968–978. [Google Scholar] [CrossRef]
- Chaudhary, S.; Tang, X.; Wei, X. Comparison of Laguerre-Gaussian and Donut Modes for MDM-WDM in OFDM-Ro-FSO Transmission System. AEU Int. J. Electron. Commun. 2018, 93, 208–214. [Google Scholar] [CrossRef]
- Kumawat, S.; Kumar, M.R. A Review on Code Families for SAC—OCDMA Systems. In Optical and Wireless Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 307–315. [Google Scholar]
- Ahmed, N.; Aljunid, S.A.; Fadil, A.; Ahmad, R.B.; Rashid, M.A. Performance Enhancement of OCDMA System Using NAND Detection with Modified Double Weight (MDW) Code for Optical Access Network. Opt. Int. J. Light Electron Opt. 2013, 124, 1402–1407. [Google Scholar] [CrossRef]
- Ortiz-Ubarri, J. New Asymptotically Optimal Three-Dimensional Wave-Length/Space/Time Optical Orthogonal Codes for OCDMA Systems. Cryptogr. Commun. 2020, 12, 785–794. [Google Scholar] [CrossRef]
- Sarangal, H.; Singh, A.; Malhotra, J.; Chaudhary, S. A Cost Effective 100 Gbps Hybrid MDM–OCDMA–FSO Transmission System under Atmospheric Turbulences. Opt. Quantum Electron. 2017, 49, 184. [Google Scholar] [CrossRef]
- Jellali, N.; Najjar, M.; Ferchichi, M.; Rezig, H. Three-Dimensional Multi-Diagonal Codes for OCDMA System. Optik 2017, 145, 428–435. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Shukla, N.K.; Chaudhary, S. A High Speed 100 Gbps MDM-SAC-OCDMA Multimode Transmission System for Short Haul Communication. Optik 2020, 202, 163665. [Google Scholar] [CrossRef]
- Kodama, T.; Isoda, T.; Morita, K.; Maruta, A.; Maruyama, R.; Kuwaki, N.; Matsuo, S.; Wada, N.; Cincotti, G.; Kitayama, K. Hybrid MDM/OCDM System with Mode and Code Multi-/Demultiplexers. In Proceedings of the SPIE-Next-Generation Optical Communication: Components, Sub-Systems, and Systems III, San Francisco, CA, USA, 5–7 February 2013; Volume 9009, pp. 124–130. [Google Scholar]
- Kodama, T.; Isoda, T.; Morita, K.; Maruta, A.; Maruyama, R.; Kuwaki, N.; Matsuo, S.; Wada, N.; Cincotti, G.; Kitayama, K. Asynchronous MDM-OCDM-Based 10G-PON over 40 km-SMF and 2 km-TMF Using Mode MUX/DeMUX at Remote Node and OLT. In Proceedings of the Optical Fiber Communication Conference, OFC 2014, San Francisco, CA USA, 9–13 March 2014; p. W2A-9. [Google Scholar]
- Kumari, M.; Arya, V. Design of Ring—Based 1 Tbps Hybrid PON—FSO Fault Protection System Using Add/Drop Multiplexer. Opt. Quantum Electron. 2023, 55, 124. [Google Scholar] [CrossRef]
- Kumari, M.; Sheetal, A.; Sharma, R. Performance Analysis of Symmetrical and Bidirectional 40 Gbps TWDM-PON Employing m-QAM-OFDM Modulation with Multi-Color LDs Based VLC System. Opt. Quantum Electron. 2021, 53, 1–29. [Google Scholar] [CrossRef]
- Dutt, S.; Arya, V. The presence of compassion satisfaction, compassion fatigue, and burn—Out among the general population. Inf. Sci. 2022, 4930, 111–122. [Google Scholar]
- Seyedzadeh, S.; Agapiou, A.; Moghaddasi, M.; Dado, M.; Glesk, I. Won-Ocdma System Based on Mw-Zcc Codes for Applications in Optical Wireless Sensor Networks. Sensors 2021, 21, 539. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Tian, Y.; Ge, D.; Zhu, J.; Ren, F.; Mo, Q.; Yu, J.; Li, Z.; Chen, Z.; et al. Fundamental-Mode MMF Transmission Enabled by Mode Conversion. Opt. Commun. 2018, 410, 112–116. [Google Scholar] [CrossRef]
- Svistunov, D.V. Selective Mode Excitation: A Technique for Advanced Fiber Systems. In Optical Fiber and Wireless Communications; InTechOpen: London, UK, 2017; pp. 105–122. [Google Scholar]
- Collings, B.; Heismann, F.; Lietaert, G. Reference Guide to Fiber Optic Testing. Jdsu 2007, 1, 139. [Google Scholar]
- Kachhatiya, V.; Prince, S. Downstream Performance Analysis and Optimization of the next Generation Passive Optical Network Stage 2 (NG-PON2). Opt. Laser Technol. 2018, 104, 90–102. [Google Scholar] [CrossRef]
- Li, C.Y.; Chang, C.H.; Lin, Z.G. Hybrid Ring-and Tree-Topology Rof Transmission System with Disconnection Protection. Photonics 2021, 8, 515. [Google Scholar] [CrossRef]
- Pires, J.J.O. Constraints on the Design of 2-Fiber Bi-Directional WDM Rings with Optical Multiplexer Section Protection. In Proceedings of the 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, Copper Mountain, CO, USA, 30 July–1 August 2001; pp. 13–14. [Google Scholar]
- Park, S.B.; Lee, C.H.; Kang, S.G.; Lee, S.B. Bidirectional WDM Self-Healing Ring Network for Hub/Remote Nodes. IEEE Photonics Technol. Lett. 2003, 15, 1657–1659. [Google Scholar] [CrossRef]
- Sun, X.; Chan, C.K.; Wang, Z.; Lin, C.; Chen, L.K. A Single-Fiber Bi-Directional WDM Self-Healing Ring Network with Bi-Directional OADM for Metro-Access Applications. IEEE J. Sel. Areas Commun. 2007, 25, 18–24. [Google Scholar] [CrossRef]
λdn (nm) | 1596 | 1596.4 | 1596.8 | 1597.2 | 1597.6 | 1598 | 1598.4 | 1598.8 | 1599.2 | 1599.6 | 1600 | 1600.4 | 1600.8 | 1601.2 | 1601.6 | 1602 | 1602.4 | 1602.8 |
λup (nm) | 1527 | 1527.4 | 1527.8 | 1528.2 | 1528.6 | 1529 | 1529.4 | 1529.8 | 1530.2 | 1530.6 | 1531 | 1531.4 | 1531.8 | 1532.2 | 1532.6 | 1533 | 1533.4 | 1533.8 |
U1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
U2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
U2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
Parameters | Values |
---|---|
Laser input power (downlink) | 10 dBm |
Laser input power (uplink) | 0 dBm |
Wavelength (downlink) | 1596–1602.8 nm |
Wavelength (uplink) | 1527–1533.8 nm |
Data rate (downlink) | 10 Gbit/s |
Data rate (uplink) | 2.5 Gbit/s |
Reference wavelength | 1550 nm |
Dark current | 9 nA |
Measured index multimode fiber length | 100–800 m |
Dispersion | 17 ps/nm × km |
Attenuation | 0.25 dB/km |
Transmission | Wavelength (nm) | Length (km) | Chromatic Tolerance (ps/nm) |
---|---|---|---|
Downlink | 1596 | 0.2 | 200 |
0.6 | 400 | ||
1 | 600 | ||
1.2 | 800 | ||
1.6 | 1000 | ||
Uplink | 1527 | 0.2 | 150 |
0.6 | 300 | ||
1 | 450 | ||
1.2 | 600 | ||
1.6 | 700 |
Length (km) | (ps) | ||
---|---|---|---|
0.2 | 3.4 | 0.03 | 0.008 |
0.6 | 10.2 | 0.10 | 0.2 |
1 | 17 | 0.17 | 0.4 |
1.2 | 20.4 | 0.20 | 0.5 |
1.6 | 27.2 | 0.27 | 0.6 |
Length (km) | 2:1 Power Combiner (dB) | 1:2 Power Splitter (dB) | Total Loss (dB) | |
---|---|---|---|---|
0.2 | 3.4 | 0.3 | 3.6 | 7.3 |
0.6 | 10.2 | 0.3 | 3.6 | 14.1 |
1 | 17 | 0.3 | 3.6 | 20.9 |
1.2 | 20.4 | 0.3 | 3.6 | 24.3 |
1.6 | 27.2 | 0.3 | 3.6 | 31.1 |
Scheme | Maximum Transmission Distance (km) | Highest Data Rate (Gbit/s) | No. of ONUs | Code Used | Design Features |
---|---|---|---|---|---|
Hybrid tree-ring topology-based radio over fiber system [42] | 26 | 1.25 | 4 | Not used | Complex and costly |
Ring-based WDM system [43] | 60 | 2.5 | 10 | Not used | Not scalable, losses and not secure |
Ring-based WDM system [44] | 15 | 10 | 6 | Not used | Not scalable, losses and not secure |
WDM Ring network [45] | 10 | 2.5 | 4 | Not used | Not scalable, losses and not secure |
Ring-based hybrid PON-FSO [34] | 10 (fiber) and 40 (FSO) | 1000 | 50 | Single weight ZCC | Not scalable, costly and more losses |
Proposed scheme | 1.6 | 10/2.5 | 58 | MNZCC | Scalable and fewer losses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, M.; Arya, V.; Al-Khafaji, H.M.R. Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency. Photonics 2023, 10, 329. https://doi.org/10.3390/photonics10030329
Kumari M, Arya V, Al-Khafaji HMR. Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency. Photonics. 2023; 10(3):329. https://doi.org/10.3390/photonics10030329
Chicago/Turabian StyleKumari, Meet, Vivek Arya, and Hamza Mohammed Ridha Al-Khafaji. 2023. "Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency" Photonics 10, no. 3: 329. https://doi.org/10.3390/photonics10030329
APA StyleKumari, M., Arya, V., & Al-Khafaji, H. M. R. (2023). Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency. Photonics, 10(3), 329. https://doi.org/10.3390/photonics10030329