High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Zhang, J.; Guo, N.; Zhu, T. Distributed optical fiber sensor for dynamic measurement. J. Light. Technol. 2021, 39, 3801–3811. [Google Scholar] [CrossRef]
- Agger, S.; Povlsen, J.H.; Varming, P. Single-frequency thulium-doped distributed-feedback fiber laser. Opt. Lett. 2004, 29, 1503–1505. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.W.; Suni, P.J.M.; Hale, C.P.; Hannon, S.M.; Magee, J.R.; Bruns, D.L.; Yuen, E.H. Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens. 1993, 31, 4–15. [Google Scholar] [CrossRef]
- Koch, G.J.; Beyon, J.Y.; Barnes, B.W.; Petros, M.; Yu, J.; Amzajerdian, F.; Kavaya, M.J.; Singh, U.N. High-energy 2 μm Doppler lidar for wind measurements. Opt. Eng. 2007, 46, 116201. [Google Scholar]
- Liao, R.; Song, Y.; Liu, W.; Shi, H.; Chai, L.; Hu, M. Dual-comb spectroscopy with a single free-running thulium-doped fiber laser. Opt. Express 2018, 26, 11046–11054. [Google Scholar] [CrossRef]
- Moulton, P.F.; Rines, G.A.; Slobodtchikov, E.V.; Wall, K.F.; Frith, G.; Samson, B.; Carter, A.L.G. Tm-doped fiber lasers: Fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 85–92. [Google Scholar] [CrossRef]
- Jackson, S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 2012, 6, 423–431. [Google Scholar] [CrossRef]
- Geng, J.; Wang, Q.; Jiang, S. 2 μm fiber laser sources their applications. In Proceedings of the Nanophotonics Macrophotonics for Space Environments, V, San Diego, CA, USA, 21–25 August 2011; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2011; Volume 8164, pp. 79–88. [Google Scholar]
- Sarp, A.S.K.; Gulsoy, M. Determining the optimal dose of 1940-nm thulium fiber laser for assisting the endodontic treatment. Lasers Med. Sci. 2017, 32, 1507–1516. [Google Scholar] [CrossRef]
- Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T.E.; Mokan, V.; Underwood, M. 1940 nm all-fiber Q-switched fiber laser. In Proceedings of the Fiber Lasers XIV: Technology and Systems, San Francisco, CA, USA, 28 January–2 February 2017; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2017; Volume 10083, pp. 71–77. [Google Scholar]
- Yang, C.; Ju, Y.L.; Yao, B.Q.; Dai, T.Y.; Duan, X.M.; Zhang, Z.G.; Liu, W. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration. Appl. Phys. B 2016, 122, 230. [Google Scholar] [CrossRef]
- Zhang, Z.; Boyland, A.J.; Sahu, J.K.; Clarkson, W.A.; Ibsen, M. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm. IEEE Photonics Technol. Lett. 2011, 23, 417–419. [Google Scholar] [CrossRef]
- Frith, G.; Carter, A.; Samson, B.; Town, G. Design considerations for short-wavelength operation of 790-nm-pumped Tm-doped fibers. Appl. Opt. 2009, 48, 5072–5075. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.; Shi, H.; Tan, F.; Wang, P. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt. Express 2014, 22, 24384–24391. [Google Scholar] [CrossRef] [Green Version]
- Simakov, N.; Davidson, A.; Hemming, A.; Bennetts, S.; Hughes, M.; Carmody, N.; Davies, P.; Haub, J. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source. In Proceedings of the Fiber Lasers IX: Technology, Systems, and Applications, San Francisco, CA, USA, 21–26 January 2012; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2012; Volume 8237, pp. 559–564. [Google Scholar]
- Liu, J.; Liu, K.; Shi, H.; Hou, Y.; Jiang, Y.; Wang, P. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Opt. Express 2014, 22, 13572–13578. [Google Scholar] [CrossRef]
- Shi, H.; Liu, J.; Liu, K.; Tan, F.; Wang, P. 160 W average power single-polarization, nanosecond pulses generation from diode-seeded thulium-doped all fiber MOPA system. In Proceedings of the Fiber Lasers XII: Technology, Systems, and Applications, San Francisco, CA, USA, 7–12 February 2015; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2015; Volume 9344, pp. 258–263. [Google Scholar]
- Yao, B.Q.; Li, H.; Li, X.L.; Chen, Y.; Duan, X.M.; Bai, S.; Yang, H.Y.; Cui, Z.; Shen, Y.J.; Dai, T.Y. An actively mode-locked Ho: YAG solid-laser pumped by a Tm-doped fiber laser. Chin. Phys. Lett. 2016, 33, 044205. [Google Scholar] [CrossRef]
- Geng, J.; Wang, Q.; Luo, T.; Jiang, S.; Amzajerdian, F. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber. Opt. Lett. 2009, 34, 3493–3495. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Menyuk, C.R.; Shaw, L.B.; Sanghera, J.S.; Aggarwal, I.D. Computational study of 3–5 μm source created by using supercontinuum generation in As 2 S 3 chalcogenide fibers with a pump at 2 μm. Opt. Lett. 2010, 35, 2907–2909. [Google Scholar] [CrossRef]
- Lippert, E.; Fonnum, H.; Stenersen, K. High power multi-wavelength infrared source. In Proceedings of the Technologies for Optical Countermeasures VII, Toulouse, France, 20–23 September 2010; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2010; Volume 7836, pp. 99–104. [Google Scholar]
- Yin, K.; Yang, W.; Zhang, B.; Li, Y.; Hou, J. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy. Quantum Electron. 2014, 44, 163. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.D.; King, T.A. Theoretical modeling of Tm-doped silica fiber lasers. J. Light. Technol. 1999, 17, 948. [Google Scholar] [CrossRef]
- Mihalcea, R.M.; Webber, M.E.; Baer, D.S.; Hanson, R.K.; Feller, G.S.; Chapman, W.B. Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm. Appl. Phys. B 1998, 67, 283–288. [Google Scholar] [CrossRef]
- Shi, W.; Petersen, E.B.; Moor, N.; Chavez-Pirson, A.; Peyghambarian, N. Single frequency actively Q-switched 2 µm fiber laser by using highly Tm-doped Germanate fiber. In CLEO: Science and Innovations; Optica Publishing Group: Washington, DC, USA, 2011; p. CThDD6. [Google Scholar]
- Blackmon, R.L.; Case, J.R.; Trammell, S.R.; Irby, P.B.; Fried, N.M. Fiber-optic manipulation of urinary stone phantoms using holmium: YAG and thulium fiber lasers. J. Biomed. Opt. 2013, 18, 028001. [Google Scholar] [CrossRef] [Green Version]
- Wenk, S.; Furst, S.; Danicke, V.; Kunde, D.T. Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60 W, 1.92 μm Tm fiber laser system. Adv. Med. Eng. V 2007, 114, 447–452. [Google Scholar]
- Stachowiak, D.; Kaczmarek, P.; Abramski, K.M. High-power pump combiners for Tm-doped fibre lasers. Opto-Electron. Rev. 2015, 23, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Pei, W.; Li, H.; Cui, Y.; Zhou, Z.; Wang, M.; Wang, Z. Narrow-linewidth 2 μm all-fiber laser amplifier with a highly stable and precisely tunable wavelength for gas molecule absorption in photonic crystal hollow-core fibers. Molecules 2021, 26, 5323. [Google Scholar] [CrossRef]
- Wang, J.; Yeom, D.; Lee, S.B.; Lee, K. 28 W CW linearly polarized single mode all-fiber thulium-doped fiber laser operating at 1.95 μm. Opt. Eng. 2017, 56, 046108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, B.; Yan, F.; Han, W.; Qin, Q.; Yang, D.; Li, T.; Yu, C.; Wang, X.; Kumamoto, K.; Suo, Y. High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA. Photonics 2023, 10, 347. https://doi.org/10.3390/photonics10040347
Guan B, Yan F, Han W, Qin Q, Yang D, Li T, Yu C, Wang X, Kumamoto K, Suo Y. High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA. Photonics. 2023; 10(4):347. https://doi.org/10.3390/photonics10040347
Chicago/Turabian StyleGuan, Biao, Fengping Yan, Wenguo Han, Qi Qin, Dandan Yang, Ting Li, Chenhao Yu, Xiangdong Wang, Kazuo Kumamoto, and Yuping Suo. 2023. "High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA" Photonics 10, no. 4: 347. https://doi.org/10.3390/photonics10040347
APA StyleGuan, B., Yan, F., Han, W., Qin, Q., Yang, D., Li, T., Yu, C., Wang, X., Kumamoto, K., & Suo, Y. (2023). High-Power, Narrow-Linewidth, Continuous-Wave, Thulium-Doped Fiber Laser Based on MOPA. Photonics, 10(4), 347. https://doi.org/10.3390/photonics10040347