Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning
Abstract
:1. Introduction
- analytical models based on machining theory;
- experimental models to examine the influence of various factors;
- design of experiments models;
- artificial intelligence (AI)-based models.
2. Materials and Methods
2.1. Materials
2.2. Surface Characterization
2.3. Experimental Setup and Direct Laser Writing
2.4. Artificial Neural Network Approach
2.5. Random Forest Approach
3. Surface Roughness Prediction
3.1. Analysis of the Dataset and Feature Construction
3.2. Prediction Approach
3.3. Validation and Evaluation of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fall, A.; Weber, B.; Pakpour, M.; Lenoir, N.; Shahidzadeh, N.; Fiscina, J.; Wagner, C.; Bonn, D. Sliding Friction on Wet and Dry Sand. Phys. Rev. Lett. 2014, 112, 175502. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.T.; Aguilar-Morales, A.I.; Alamri, S.; Huerta-Murillo, D.; Cordovilla, F.; Lasagni, A.F.; Ocaña, J.L. Superhydrophobicity on Hierarchical Periodic Surface Structures Fabricated via Direct Laser Writing and Direct Laser Interference Patterning on an Aluminium Alloy. Opt. Lasers Eng. 2018, 111, 193–200. [Google Scholar] [CrossRef]
- Milles, S.; Voisiat, B.; Nitschke, M.; Lasagni, A.F. Influence of Roughness Achieved by Periodic Structures on the Wettability of Aluminum Using Direct Laser Writing and Direct Laser Interference Patterning Technology. J. Mater. Process. Technol. 2019, 270, 142–151. [Google Scholar] [CrossRef]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Correlation between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behaviour of Contact Surfaces. Tribol. Int. 2012, 48, 102–112. [Google Scholar] [CrossRef]
- Dunn, A.; Wlodarczyk, K.L.; Carstensen, J.V.; Hansen, E.B.; Gabzdyl, J.; Harrison, P.M.; Shephard, J.D.; Hand, D.P. Laser Surface Texturing for High Friction Contacts. Appl. Surf. Sci. 2015, 357, 2313–2319. [Google Scholar] [CrossRef] [Green Version]
- Vercillo, V.; Tonnicchia, S.; Romano, J.-M.; García-Girón, A.; Aguilar-Morales, A.I.; Alamri, S.; Dimov, S.S.; Kunze, T.; Lasagni, A.F.; Bonaccurso, E. Design Rules for Laser-Treated Icephobic Metallic Surfaces for Aeronautic Applications. Adv. Funct. Mater. 2020, 30, 1910268. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Wang, B.; Yan, Z.; Wang, Z.; Dong, L. Effect of Surface Topography Parameters on Friction and Wear of Random Rough Surface. Materials 2019, 12, 2762. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Schmauder, S.; Lyu, M.; Schneider, Y.; Zhang, C.; Han, Y. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces. Materials 2018, 11, 237. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus Roughness of Engineering Surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Benardos, P.G.; Vosniakos, G.-C. Predicting Surface Roughness in Machining: A Review. Int. J. Mach. Tools Manuf. 2003, 43, 833–844. [Google Scholar] [CrossRef]
- Yousef, B.F.; Knopf, G.K.; Bordatchev, E.V.; Nikumb, S.K. Neural Network Modeling and Analysis of the Material Removal Process during Laser Machining. Int. J. Adv. Manuf. Technol. 2003, 22, 41–53. [Google Scholar] [CrossRef]
- Tóth, G.J.; Szakács, T.; Lörincz, A. Simulation of Pulsed Laser Material Processing Controlled by an Extended Self-Organizing Kohonen Feature Map. Mater. Sci. Eng. B 1993, 18, 281–288. [Google Scholar] [CrossRef]
- Desai, C.K.; Shaikh, A. Prediction of Depth of Cut for Single-Pass Laser Micro-Milling Process Using Semi-Analytical, ANN and GP Approaches. Int. J. Adv. Manuf. Technol. 2012, 60, 865–882. [Google Scholar] [CrossRef]
- Shashank, V.; Saradhi, V.P.; Jagadesh, T. Modeling of Laser Assisted Machining Process Using Artificial Neural Network. J. Phys. Conf. Ser. 2019, 1172, 012040. [Google Scholar] [CrossRef]
- Baronti, L.; Michalek, A.; Castellani, M.; Penchev, P.; See, T.L.; Dimov, S. Artificial Neural Network Tools for Predicting the Functional Response of Ultrafast Laser Textured/Structured Surfaces. Int. J. Adv. Manuf. Technol. 2022. [Google Scholar] [CrossRef]
- Gonzalez-Val, C.; Pallas, A.; Panadeiro, V.; Rodriguez, A. A Convolutional Approach to Quality Monitoring for Laser Manufacturing. J. Intell. Manuf. 2020, 31, 789–795. [Google Scholar] [CrossRef] [Green Version]
- UDDEHOLM STAVAX® ESR. Available online: https://www.uddeholm.com/files/PB_Uddeholm_stavax_esr_english.pdf (accessed on 16 February 2023).
- DIN EN10088-3:2014-12; Stainless steels—Part 3. Deutsches Institut für Normung e.V.: Berlin, Germany, 2014.
- Boulané-Petermann, L. Processes of Bioadhesion on Stainless Steel Surfaces and Cleanability: A Review with Special Reference to the Food Industry. Biofouling 1996, 10, 275–300. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Hu, J. Recent Advances in the Development of Aerospace Materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Zhu, L.; Li, N.; Childs, P.R.N. Light-Weighting in Aerospace Component and System Design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Vilar, J.P.G.; Góra, W.S.; See, T.L.; Hand, D.P. Impact of Laser Texturing Parameters and Processing Environment in the Anti-Wetting Transition of Nanosecond Laser Generated Textures. In Proceedings of the Laser-Based Micro- and Nanoprocessing XIV, San Francisco, CA, USA, 1–6 February 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11268, pp. 253–261. [Google Scholar]
- Murtagh, F. Multilayer Perceptrons for Classification and Regressionm Amsterdam, Netherlands. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; Teh, Y.W., Titterington, M., Eds.; Volume 9, pp. 249–256. Available online: http://proceedings.mlr.press/v9/glorot10a.html (accessed on 1 March 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Turner, R.; Eriksson, D.; McCourt, M.; Kiili, J.; Laaksonen, E.; Xu, Z.; Guyon, I. Bayesian Optimization Is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. Proc. NeurIPS 2020 Compet. Demonstr. Track 2021, 24, 3–26. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Grushka-Cockayne, Y.; Jose, V.R.R.; Lichtendahl, K.C. Ensembles of Overfit and Overconfident Forecasts. Manag. Sci. 2016, 63, 1110–1130. [Google Scholar] [CrossRef]
- Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning 2010. arXiv 2010, arXiv:1012.2599. [Google Scholar]
- Bordatchev, E.V.; Hafiz, A.M.K.; Tutunea-Fatan, O.R. Performance of Laser Polishing in Finishing of Metallic Surfaces. Int. J. Adv. Manuf. Technol. 2014, 73, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Tripathi, K.C. Artificial Neural Network and Non-Linear Regression: A Comparative Study. Int. J. Sci. Res. Publ. 2012, 2, 740–744. [Google Scholar]
- Park, J.H.; Kang, Y. Inclusions in Stainless Steels—A Review. Steel Res. Int. 2017, 88, 1700130. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Cr | V | Ni | N |
---|---|---|---|---|---|---|---|
Chromium nickel steel | 0.38 | 0.9 | 0.5 | 13.6 | 0.3 | 8.0–10.5 | 0.11 |
Stavax ESR | 0.07 | 1.0 | 2.0 | 17.5–19.5 | - | - | - |
Matrix | Power [W] | Frequency [kHz] | Speed [mm/s] | Pulse Width [ns] |
---|---|---|---|---|
1 | 30 | 10 … 100 | 100 … 1000 | 100 |
2 | 30 | 110 … 200 | 1100 … 2000 | 100 |
3 | 18 | 110 … 200 | 1100 … 2000 | 100 |
4 | 15 | 110 … 200 | 1100 … 2000 | 100 |
5 | 30 | 200 | 1100 … 2000 | 100 |
6 | 30 | 150 | 1600 … 2000 | 100 |
7 | 30 | 110 … 200 | 2500 | 100 |
8 | 30 | 110 … 200 | 2500 | 100 |
Artificial Neural Network | Random Forest | |||
---|---|---|---|---|
316L | Stavax® | 316L | Stavax® | |
Minimum Error (µm) | 0.001 | 0.001 | 0 | 0.001 |
Maximum Error (µm) | 1.084 | 0.234 | 1.339 | 0.290 |
Mean Absolute Error (µm) | 0.078 | 0.047 | 0.079 | 0.047 |
Correlation (R2) | 0.798 | 0.917 | 0.79 | 0.907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steege, T.; Bernard, G.; Darm, P.; Kunze, T.; Lasagni, A.F. Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning. Photonics 2023, 10, 361. https://doi.org/10.3390/photonics10040361
Steege T, Bernard G, Darm P, Kunze T, Lasagni AF. Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning. Photonics. 2023; 10(4):361. https://doi.org/10.3390/photonics10040361
Chicago/Turabian StyleSteege, Tobias, Gaëtan Bernard, Paul Darm, Tim Kunze, and Andrés Fabián Lasagni. 2023. "Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning" Photonics 10, no. 4: 361. https://doi.org/10.3390/photonics10040361
APA StyleSteege, T., Bernard, G., Darm, P., Kunze, T., & Lasagni, A. F. (2023). Prediction of Surface Roughness in Functional Laser Surface Texturing Utilizing Machine Learning. Photonics, 10(4), 361. https://doi.org/10.3390/photonics10040361