Axial Collective Mode of a Dipolar Quantum Droplet
(This article belongs to the Section Quantum Photonics and Technologies)
Abstract
:1. Introduction
2. Formalism
2.1. Ground States
2.2. Excitations
2.2.1. Bogoliubov–De Gennes Theory
2.2.2. Sum Rule Approach for Lowest Compressional Mode
3. Results for Free-Space Droplets
3.1. Energetics
3.2. Excitations
3.3. Results with Varying
4. Results for Trapped Droplet
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griesmaier, A.; Werner, J.; Hensler, S.; Stuhler, J.; Pfau, T. Bose-Einstein Condensation of Chromium. Phys. Rev. Lett. 2005, 94, 160401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaufils, Q.; Chicireanu, R.; Zanon, T.; Laburthe-Tolra, B.; Maréchal, E.; Vernac, L.; Keller, J.C.; Gorceix, O. All-optical production of chromium Bose-Einstein condensates. Phys. Rev. A 2008, 77, 061601. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Burdick, N.Q.; Youn, S.H.; Lev, B.L. Strongly Dipolar Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett. 2011, 107, 190401. [Google Scholar] [CrossRef] [Green Version]
- Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Rietzler, A.; Grimm, R.; Ferlaino, F. Bose-Einstein Condensation of Erbium. Phys. Rev. Lett. 2012, 108, 210401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahaye, T.; Menotti, C.; Santos, L.; Lewenstein, M.; Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 2009, 72, 126401. [Google Scholar] [CrossRef]
- Chomaz, L.; Ferrier-Barbut, I.; Ferlaino, F.; Laburthe-Tolra, B.; Lev, B.L.; Pfau, T. Dipolar physics: A review of experiments with magnetic quantum gases. Rep. Prog. Phys. 2022, 86, 026401. [Google Scholar] [CrossRef]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135–1145. [Google Scholar] [CrossRef]
- Lima, A.R.P.; Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 2011, 84, 041604. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.R.P.; Pelster, A. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys. Rev. A 2012, 86, 063609. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Kadau, H.; Schmitt, M.; Wenzel, M.; Pfau, T. Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 2016, 116, 215301. [Google Scholar] [CrossRef] [Green Version]
- Wächtler, F.; Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 2016, 93, 061603(R). [Google Scholar] [CrossRef] [Green Version]
- Bisset, R.N.; Wilson, R.M.; Baillie, D.; Blakie, P.B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 2016, 94, 033619. [Google Scholar] [CrossRef] [Green Version]
- Kadau, H.; Schmitt, M.; Wenzel, M.; Wink, C.; Maier, T.; Ferrier-Barbut, I.; Pfau, T. Observing the Rosensweig instability of a quantum ferrofluid. Nature 2016, 530, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Wenzel, M.; Böttcher, F.; Ferrier-Barbut, I.; Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 2016, 539, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Baier, S.; Petter, D.; Mark, M.J.; Wächtler, F.; Santos, L.; Ferlaino, F. Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid. Phys. Rev. X 2016, 6, 041039. [Google Scholar] [CrossRef] [Green Version]
- Baillie, D.; Wilson, R.M.; Blakie, P.B. Collective Excitations of Self-Bound Droplets of a Dipolar Quantum Fluid. Phys. Rev. Lett. 2017, 119, 255302. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Baillie, D.; Blakie, P.B. Infinite dipolar droplet: A simple theory for the macrodroplet regime. Phys. Rev. A 2022, 105, 023308. [Google Scholar] [CrossRef]
- Wächtler, F.; Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. Phys. Rev. A 2016, 94, 043618. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Wenzel, M.; Böttcher, F.; Langen, T.; Isoard, M.; Stringari, S.; Pfau, T. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms. Phys. Rev. Lett. 2018, 120, 160402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.C.; Baillie, D.; Blakie, P.B. Numerical calculation of dipolar-quantum-droplet stationary states. Phys. Rev. Res. 2021, 3, 013283. [Google Scholar] [CrossRef]
- Pitaevskii, L.; Stringari, S. Bose-Einstein Condensation and Superfluidity; Oxford University Press: Oxford, UK, 2016; Volume 164. [Google Scholar]
- Menotti, C.; Stringari, S. Collective oscillations of a one-dimensional trapped Bose-Einstein gas. Phys. Rev. A 2002, 66, 043610. [Google Scholar] [CrossRef] [Green Version]
- Tanzi, L.; Roccuzzo, S.M.; Lucioni, E.; Famà, F.; Fioretti, A.; Gabbanini, C.; Modugno, G.; Recati, A.; Stringari, S. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 2019, 574, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef] [Green Version]
- Triay, A. Existence of minimizers in generalized Gross-Pitaevskii theory with the Lee-Huang-Yang correction. arXiv 2019, arXiv:1904.10672. [Google Scholar]
- Lee, A.C.; Baillie, D.; Bisset, R.N.; Blakie, P.B. Excitations of a vortex line in an elongated dipolar condensate. Phys. Rev. A 2018, 98, 063620. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blakie, P.B. Axial Collective Mode of a Dipolar Quantum Droplet. Photonics 2023, 10, 393. https://doi.org/10.3390/photonics10040393
Blakie PB. Axial Collective Mode of a Dipolar Quantum Droplet. Photonics. 2023; 10(4):393. https://doi.org/10.3390/photonics10040393
Chicago/Turabian StyleBlakie, Peter Blair. 2023. "Axial Collective Mode of a Dipolar Quantum Droplet" Photonics 10, no. 4: 393. https://doi.org/10.3390/photonics10040393
APA StyleBlakie, P. B. (2023). Axial Collective Mode of a Dipolar Quantum Droplet. Photonics, 10(4), 393. https://doi.org/10.3390/photonics10040393