Spherical Aberration and Accommodative Insufficiency: Is There a Link?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Procedure
2.3. On-Axis Aberrometry
2.4. Off-Axis Aberrometry
2.5. Statistical Analysis
3. Results
3.1. On-Axis Aberrometry
3.2. Off-Axis Aberrometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goss, D.A.; West, R.W. Introduction to the Optics of the Eye; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- López-Gil, N.; Rucker, F.J.; Stark, L.R.; Badar, M.; Borgovan, T.; Burke, S.; Kruger, P.B. Effect of Third Order Aberrations on Dynamic Accommodation. Vision Res. 2007, 47, 755–765. [Google Scholar] [CrossRef]
- Chen, L.; Kruger, P.B.; Hofer, H.; Singer, B.; Williams, D.R. Accommodation with Higher-Order Monochromatic Aberrations Corrected with Adaptive Optics. J. Opt. Soc. Am. 2006, 23, 1–8. [Google Scholar] [CrossRef]
- Plainis, S.; Ginis, H.S.; Pallikaris, A. The Effect of Ocular Aberrations on Steady-State Errors of Accommodative Response. J. Vis. 2005, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Choi, J.A.; Kim, H.; Yu, S.Y.; Joo, C.K. Changes in Ocular Wavefront Aberrations and Retinal Image Quality with Objective Accommodation. J. Cataract. Refract. Surg. 2011, 37, 835–841. [Google Scholar] [CrossRef] [PubMed]
- He, J.C.; Burns, S.A.; Marcos, S. Monochromatic Aberrations in the Accommodated Human Eye. Vision Res. 2000, 40, 41–48. [Google Scholar] [CrossRef]
- Cheng, H.; Barnett, J.K.; Vilupuru, A.S.; Marsack, J.D.; Kasthurirangan, S.; Applegate, R.A.; Roorda, A. A Population Study on Changes in Wave Aberrations with Accomodation. J. Vis. 2004, 4, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehren, T.; Collins, M.J. Accommodation Stimulus-Response Function and Retinal Image Quality. Vision Res. 2006, 46, 1633–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.Y.; Wang, L.; Zhou, X.T.; Yu, Z.Q. Wavefront Aberration Changes Caused by a Gradient of Increasing Accommodation Stimuli. Eye 2015, 29, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninomiya, S.; Fujikado, T.; Kuroda, T.; Maeda, N.; Tano, Y.; Oshika, T.; Hirohara, Y.; Mihashi, T. Changes of Ocular Aberration with Accommodation. Am. J. Ophthalmol. 2002, 134, 924–926. [Google Scholar] [CrossRef]
- López-Gil, N.; Fernández-Sánchez, V.; Legras, R.; Montés-Micó, R.; Lara, F.; Nguyen-Khoa, J.L. Accommodation-Related Changes in Monochromatic Aberrations of the Human Eye as a Function of Age. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, N.; Fernández-Sánchez, V. The Change of Spherical Aberration during Accommodation and its Effect on the Accommodation Response. J. Vis. 2010, 10, 1–15. [Google Scholar] [CrossRef]
- Theagarayan, B.; Radhakrishnan, H.; Allen, P.M.; Calver, R.I.; Rae, S.M.; O’Leary, D.J. The Effect of Altering Spherical Aberration on the Static Accommodative Response. Ophthalmic Physiol. Opt. 2009, 29, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Scott, D.H. Monochromatic Aberrations of Human Eyes in the Horizontal Visual Field. J. Opt. Soc. Am. 2002, 19, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.; Atchison, D.A.; Charman, W.N. Effect of Accommodation on Peripheral Ocular Aberrations. J. Vis. 2009, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romashchenko, D.; Papadogiannis, P.; Unsbo, P.; Lundström, L. Simultaneous Measurements of Foveal and Peripheral Aberrations with Accommodation in Myopic and Emmetropic Eyes. Biomed. Opt. Express 2021, 12, 7422. [Google Scholar] [CrossRef] [PubMed]
- Lundström, L.; Mira-Agudelo, A.; Artal, P. Peripheral Optical Errors and Their Change with Accommodation Differ between Emmetropic and Myopic Eyes. J. Vis. 2009, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, K.; Gomes, J.; Franco, S. Effect of Accommodation on Peripheral Higher Order Aberrations. Photonics 2021, 9, 64. [Google Scholar] [CrossRef]
- Scheiman, M.; Wick, B. Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cacho-Martínez, P.; García-Muñoz, Á.; Ruiz-Cantero, M.T. Do We Really Know the Prevalence of Accomodative and Nonstrabismic Binocular Dysfunctions? J. Optom. 2010, 3, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Darko-Takyi, C.; Khan, N.E.; Nirghin, U. A Review of the Classification of Nonstrabismic Binocular Vision Anomalies. Optom. Rep. 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hussaindeen, J.R.; Murali, A. Accommodative Insufficiency: Prevalence, Impact and Treatment Options. Clin. Optom. 2020, 12, 135–149. [Google Scholar] [CrossRef]
- Marran, L.F.; De Land, P.; Nguyen, A.L. Accommodative Insufficiency is the Primary Source of Symptoms in Children Diagnosed with Convergence Insufficiency. Optom. Vis. Sci. 2006, 83, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Sterner, B.; Gellerstedt, M.; Sjöström, A. Accommodation and the Relationship to Subjective Symptoms with Near Work for Young School Children. Ophthalmic Physiol. Opt. 2006, 26, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.; Rydberg, A. Asthenopia in Schoolchildren, Orthoptic and Ophthalmological Findings and Treatment. Doc. Ophthalmol. 2005, 111, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, Z.; Liao, M.; Li, Q.; Tang, X.L.; Liu, L. Effect of Corneal Refractive Surgery on Accommodative and Binocular Dysfunctions Among Civilian Pilots in Southwest China. BMC Ophthalmol. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Hashemi, H.; Khabazkhoob, M.; Nabovati, P.; Shahraki, F.A.; Ostadimoghaddam, H.; Faghihi, M.; Aghamirsalim, M.; Doostdar, A.; Yekta, A. Accommodative Insufficiency in a Student Population in Iran. J. Optom. 2019, 12, 161–167. [Google Scholar] [CrossRef]
- Porcar, E.; Martinez-Palomera, A. Prevalence of General Binocular Dysfunctions in a Population of University Students. Optom. Vis. Sci. 1997, 74, 111–113. [Google Scholar] [CrossRef]
- Wajuihian, S.O.; Hansraj, R. Accommodative Anomalies in a Sample of Black High School Students in South Africa. Ophthalmic Epidemiol. 2016, 23, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Gomes, J. Real-Time Measurement of Ocular Wavefront Aberrations in Symptomatic Subjects. Biomed Res. Int. 2018, 2018, 9415751. [Google Scholar] [CrossRef]
- Kasthurirangan, S.; Glasser, A. Characteristics of Pupil Responses During Far-to-Near and Near-to-Far Accommodation. Ophthalmic Physiol. Opt. 2005, 25, 328–339. [Google Scholar] [CrossRef]
- Tarrant, J.; Roorda, A.; Wildsoet, C.F. Determining the Accommodative Response from Wavefront Aberrations. J. Vis. 2010, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchison, D.A.; Varnas, S.R. Accommodation Stimulus and Response Determinations with Autorefractors. Ophthalmic Physiol. Opt. 2017, 37, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Franch, I.; Xu, R.; Bradley, A.; Thibos, L.N. The Effect of Spherical Aberration on Visual Performance and Refractive State for Stimuli and Tasks Typical of Night Viewing. J. Optom. 2018, 11, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, Y.; Yuan, Y. Simultaneously Measuring Ocular Aberration and Anterior Segment Biometry During Accommodation. J. Innov. Opt. Health Sci. 2015, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Wang, Y.; Yuan, Y.; Wei, L.; Lv, F.; Zhang, Y. Measurement of Ocular Anterior Segment Dimension and Wavefront Aberration Simultaneously During Accommodation. J. Biomed. Opt. 2012, 17, 120501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, W.J. Borish’s Clinical Refraction-E-Book; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Lens (D) | Effective AS (D) |
---|---|
−1.00 | 1.00 |
−2.50 | 2.44 |
−4.00 | 3.83 |
−5.00 | 4.73 |
Ac (D) | M.E.M. (D) | MFA (cpm †) | |
---|---|---|---|
Control | 9.43 ± 1.15 | 0.64 ± 0.17 | 14.64 ± 4.15 |
AI | 5.7 ± 1.14 | 0.88 ± 0.24 | 7.3 ± 4.35 |
p-value | <0.01 * | <0.01 * | <0.01 * |
Mean AR (D) | ||||
---|---|---|---|---|
AS (D) | 1.00 | 2.44 | 3.83 | 4.73 |
Control | +1.02 ± 0.36 | +2.40 ± 0.84 | +3.90 ± 0.89 | +5.10 ± 0.44 |
AI | +0.25 ± 0.16 | +1.20 ± 0.80 | +2.95 ± 0.21 | +3.99 ± 1.67 |
p-value | 0.016 * | 0.014 * | 0.115 | 0.368 |
N | 21 (11/10) | 21 (11/10) | 17 (10/7) | 10 (4/6) |
Z(4,0) | Z(6,0) | |||||
---|---|---|---|---|---|---|
Unaccommodated | ||||||
Control (µm) | AI (µm) | p-Value | Control (µm) | AI (µm) | p-Value | |
T 11.5° | −0.007 ± 0.124 | 0.005 ± 0.076 | 0.941 | 0.009 ± 0.168 | 0.081 ± 0.175 | 0.882 |
T 23° | 0.114 ± 0.181 | 0.071 ± 0.165 | 0.400 | 0.026 ± 0.129 | 0.041 ± 0.171 | 0.604 |
N 11.5° | 0.071 ± 0.135 | 0.065 ± 0.125 | 0.900 | 0.004 ± 0.099 | −0.047 ± 0.064 | 0.370 |
N 23° | 0.073 ± 0.145 | 0.004 ± 0.099 | 0.249 | 0.016 ± 0.151 | 0.026 ± 0.095 | 0.604 |
S 11.5° | <0.001 ± 0.164 | 0.063 ± 0.107 | 0.340 | −0.012 ± 0.072 | −0.040 ± 0.089 | 0.455 |
S 23° | −0.022 ± 0.165 | 0.070 ± 0.138 | 0.207 | −0.091 ± 0.199 | −0.031 ± 0.205 | 0.400 |
I 11.5° | 0.036 ± 0.146 | 0.042 ± 0.088 | 0.710 | 0.077 ± 0.225 | 0.014 ± 0.252 | 0.563 |
I 23° | 0.045 ± 0.102 | 0.013 ± 0.042 | 0.375 | <0.001 ± 0.107 | 0.024 ± 0.180 | 0.549 |
Accommodated | ||||||
Control (µm) | AI (µm) | p-Value | Control (µm) | AI (µm) | p-Value | |
T 11.5° | 0.024 ± 0.054 | 0.004 ± 0.012 | 0.941 | 0.001 ± 0.042 | −0.025 ± 0.043 | 0.031 * |
T 23° | −0.034 ± 0.034 | −0.018 ± 0.033 | 0.309 | −0.004 ± 0.042 | −0.015 ± 0.055 | 0.638 |
N 11.5° | −0.019 ± 0.040 | −0.009 ± 0.039 | 0.603 | −0.004 ± 0.026 | −0.007 ± 0.028 | 0.783 |
N 23° | −0.024 ± 0.062 | −0.009 ± 0.036 | 0.900 | −0.015 ± 0.038 | 0.017 ± 0.039 | 0.092 |
S 11.5° | −0.012 ± 0.057 | −0.008 ± 0.027 | 0.503 | −0.007 ± 0.016 | 0.016 ± 0.023 | 0.400 |
S 23° | −0.006 ± 0.046 | −0.010 ± 0.041 | 0.838 | 0.025 ± 0.067 | 0.017 ± 0.061 | 0.779 |
I 11.5° | −0.004 ± 0.027 | −0.010 ± 0.036 | 0.624 | −0.022 ± 0.063 | 0.014 ± 0.082 | 0.286 |
I 23° | −0.008 ± 0.034 | 0.008 ± 0.028 | 0.370 | 0.012 ± 0.030 | −0.012 ± 0.051 | 0.285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.; Sapkota, K.; Franco, S. Spherical Aberration and Accommodative Insufficiency: Is There a Link? Photonics 2023, 10, 452. https://doi.org/10.3390/photonics10040452
Gomes J, Sapkota K, Franco S. Spherical Aberration and Accommodative Insufficiency: Is There a Link? Photonics. 2023; 10(4):452. https://doi.org/10.3390/photonics10040452
Chicago/Turabian StyleGomes, Jessica, Kishor Sapkota, and Sandra Franco. 2023. "Spherical Aberration and Accommodative Insufficiency: Is There a Link?" Photonics 10, no. 4: 452. https://doi.org/10.3390/photonics10040452
APA StyleGomes, J., Sapkota, K., & Franco, S. (2023). Spherical Aberration and Accommodative Insufficiency: Is There a Link? Photonics, 10(4), 452. https://doi.org/10.3390/photonics10040452