A High-Sensitivity Sensor Based on Insulator-Metal-Insulator Structure
Abstract
:1. Introduction
2. Theoretical Models and Numerical Methods
3. Experimental Results and Analysis
3.1. Influence of Metal Layer Thickness
3.2. The Choice of Dielectric Layer and the Impact of Different Dielectric Layers
3.3. Effect of Different Numbers of Layers on Sensor Performance
3.4. Sensor Based on IMI Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B 2000, 61, 10484–10503. [Google Scholar] [CrossRef]
- Fan, Y.-E.; Zhu, T.; Shi, L.; Rao, Y.-J. Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation. Appl. Opt. 2011, 50, 4604–4610. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef]
- Nenninger, G.; Tobiška, P.; Homola, J.; Yee, S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens. Actuators B Chem. 2001, 74, 145–151. [Google Scholar] [CrossRef]
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1902, 4, 396–402. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Piliarik, M.; Párová, L.; Homola, J. High-throughput SPR sensor for food safety. Biosens. Bioelectron. 2009, 24, 1399–1404. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef]
- Feng, X.; Yang, M.; Luo, Y.; Tang, J.; Guan, H.; Fang, J.; Lu, H.; Yu, J.; Zhang, J.; Chen, Z.J.O.; et al. Long range surface plas-mon resonance sensor based on side polished fiber with the buffer layer of magnesium fluoride. Opt. Quantum Electron. 2017, 49, 1–12. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, N.K.; Sajal, V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: A theoretical study. Sens. Actuators B Chem. 2015, 206, 463–470. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J. Optical multilayers for LED-based surface plasmon resonance sensors. Appl. Opt. 2006, 45, 3752–3759. [Google Scholar] [CrossRef] [PubMed]
- Chien, F.-C.; Chen, S.-J. Direct determination of the refractive index and thickness of a biolayer based on coupled waveguide-surface plasmon resonance mode. Opt. Lett. 2006, 31, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Kawata, S.; Minami, S. Multilayer system for a high-precision surface plasmon resonance sensor. Opt. Lett. 1990, 15, 75–77. [Google Scholar] [CrossRef]
- Huang, P.; Yao, Y.; Zhong, W.; Gu, P.; Yan, Z.; Liu, F.; Yan, B.; Tang, C.; Chen, J.; Zhu, M. Optical sensing based on classical analogy of double Electromagnetically induced transparencies. Res. Phys. 2022, 39, 105732. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Cai, C.; Yang, Z.; Qi, Z.-M. Surface plasmon resonance gas sensor with a nanoporous gold film. Opt. Lett. 2022, 47, 4155. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A.J.S. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 2017, 249, 168–176. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M. High-sensitivity plasmonic sensor based on metal–insulator–metal wave-guide and hexagonal-ring cavity. IEEE Sens. J. 2016, 16, 3041–3046. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M. Nanostructures-Fundamentals; Applications. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostructures Fundam. Appl. 2018, 32, 28–34. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Zhu, J.; Chen, T.; Zhang, L.; Yang, H.; Tang, C.; Qi, Y.; Yu, J. Metal–insulator–metal waveguide structure coupled with T-type and ring resonators for independent and tunable multiple Fano resonance and refractive in-dex sensing. Opt. Commun. 2023, 528, 128993. [Google Scholar] [CrossRef]
- Liu, F.; Yan, S.; Shen, L.; Liu, P.; Chen, L.; Zhang, X.; Liu, G.; Liu, J.; Li, T.; Ren, Y. A nanoscale sensor based on a toroidal cavity with a built-in elliptical ring structure for temperature sensing application. Nanomaterials 2022, 12, 3396. [Google Scholar] [CrossRef]
- Butt, M. Metal-insulator-metal waveguide-based plasmonic sensors: Fantasy or truth—A critical review. Appl. Res. 2022, e202200099. [Google Scholar] [CrossRef]
- Gavela, A.F.; García, D.G.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef]
- Sinibaldi, A. Cancer biomarker detection with photonic crystals-based biosensors: An overview. J. Light. Technol. 2021, 39, 3871–3881. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; Kumar, A.; Armenise, M.N.; Ciminelli, C.J. Highly sensitive refractive index sensor based on poly-mer bragg grating: A case study on extracellular vesicles detection. Biosensors 2022, 12, 415. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N.J. A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 2022, 251, 168466. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, A. A compact and ultra high sensitive RI sensor using modal interference in an in-tegrated optic waveguide with metal under-cladding. Sens. Actuators B Chem. 2017, 240, 1302–1307. [Google Scholar] [CrossRef]
- Shen, Z.; Hongda, Y.; Zhang, L.; Chen, Y. Refractive index sensing based on surface plasmon-coupled emission excited by reverse Kretschmann or Tamm structure. Opt. Lett. 2022, 47, 5068–5071. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chiang, W.-F.; Shih, Y.-H.; Wei, W.-Y.; Su, J.-Y.; Huang, C.-Y. Folding metamaterials with extremely strong electromagnetic resonance. Photon- Res. 2022, 10, 2215. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.-P.; Shih, Y.-H.; Chen, Y.-S.; Lin, X.-Y.; Liu, J.-H.; Huang, C.-Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photon- Res. 2021, 9, 1970. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, Z.; Gao, X.; Wang, Q.; Yuan, J.; Liu, Y.; Jiang, L. Terahertz nonreciprocal and functionality-switchable de-vices based on dielectric multilayers integrated with graphene and VO2. Opt. Lett. 2022, 47, 678–681. [Google Scholar] [CrossRef]
- Jacob, J.; Babu, A.; Mathew, G.; Mathew, V. Propagation of surface plasmon polaritons in anisotropic MIM and IMI structures. Superlattices Microstruct. 2008, 44, 282–290. [Google Scholar] [CrossRef]
- Burke, J.J.; Stegeman, G.I.; Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 1986, 33, 5186–5201. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Che, K.; Xiang, Y.; Qin, Y.J. Enhancement of Sensitivity with High− Reflective− Index Guided− Wave Nanomateri-als for a Long− Range Surface Plasmon Resonance Sensor. Nanomaterials 2022, 12, 168. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Abdellatif, S.; Ghannam, R.; Khalil, A.S.G. Simulating the dispersive behavior of semiconductors using the Lorentzian-Drude model for photovoltaic devices. Appl. Opt. 2014, 53, 3294–3300. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D.; Jha, R.J. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, B.D. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 2007, 101, 093111. [Google Scholar] [CrossRef]
- Economou, E.N. Surface Plasmons in Thin Films. Phys. Rev. 1969, 182, 539–554. [Google Scholar] [CrossRef]
- Gupta, B.; Sharma, A.K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study. Sens. Actuators B Chem. 2005, 107, 40–46. [Google Scholar] [CrossRef]
- Hansen, W. Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J. Opt. Soc. Am. 1968, 58, 380–390. [Google Scholar] [CrossRef]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P. Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 2015, 121, 525–533. [Google Scholar] [CrossRef]
- Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 1981, 47, 1927. [Google Scholar] [CrossRef]
- Wang, B.; Singh, S.C.; Lu, H.; Guo, C. Design of aluminum bowtie nanoantenna array with geometrical control to tune lspr from uv to near-ir for optical sensing. Plasmonics 2020, 15, 609–621. [Google Scholar] [CrossRef]
- Lazareva, E.N.; Tuchin, V. Measurement of refractive index of hemoglobin in the visible/NIR spectral range. J. Biomed. Opt. 2018, 23, 035004. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, L.; Liu, Y.; Niu, H.; Dong, M.; Luo, F. Frequency-splitting effect of fiber laser for liquid refractive index-measurement. Opt. Fiber Technol. 2021, 67, 102719. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Guo, X.; Tong, C.; Chen, X.; Zeng, Y.; Shen, J.; Li, C. Highly sensitive short-range mode resonance sensor with multilayer structured hyperbolic metamaterials. Opt. Express 2023, 31, 3520. [Google Scholar] [CrossRef]
- Maurya, S.; Maurya, P.; Verma, R. Dual mode fiber optic high-performance sensor designs for ultra-low concentrations in NIR region. Opt. Quantum Electron. 2023, 55, 1–23. [Google Scholar] [CrossRef]
- Vala, M.; Etheridge, S.; Roach, J.; Homola, J. Long-range surface plasmons for sensitive detection of bacterial analytes. Sens. Actuators B Chem. 2009, 139, 59–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Gan, S.; Wu, L.; Zhu, J.; Xiang, Y.; Dai, X. GeSe nanosheets modified surface plasmon resonance sensors for enhancing sensitivity. Nanophotonics 2020, 9, 327–336. [Google Scholar] [CrossRef]
- Gao, Z.; Hou, Z.; Wang, H.; Tong, X.; Shen, J.; Li, C. High-Sensitivity Sensor Based on Energy Transfer. IEEE Photon- Technol. Lett. 2022, 34, 787–790. [Google Scholar] [CrossRef]
Oxide | RI | S (μm/RIU) | Average S (μm/RIU) | FOM (RIU−1) | Average FOM (RIU−1) |
---|---|---|---|---|---|
SiO2 | 1.3494 | 180 | 171.43 | 2037.69 | 2443.73 |
1.3495 | 200 | 2857.14 | |||
1.3496 | 200 | 2898.55 | |||
1.3497 | 160 | 2381.84 | |||
1.3498 | 160 | 2253.52 | |||
1.3499 | 160 | 2253.52 | |||
1.3500 | 140 | 2153.85 | |||
MgO | 1.3494 | 180 | 171.43 | 1689.11 | 2324.09 |
1.3495 | 200 | 2777.78 | |||
1.3496 | 200 | 2777.78 | |||
1.3497 | 160 | 2222.22 | |||
1.3498 | 160 | 2285.94 | |||
1.3499 | 160 | 2352.94 | |||
1.3500 | 140 | 2153.85 | |||
TiO2 | 1.3494 | 200 | 162.86 | 2985.07 | 2455.60 |
1.3495 | 200 | 3030.30 | |||
1.3496 | 160 | 2388.06 | |||
1.3497 | 160 | 2153.85 | |||
1.3498 | 140 | 2187.50 | |||
1.3499 | 140 | 2222.22 | |||
1.3500 | 140 | 2222.22 | |||
Al2O3 | 1.3494 | 220 | 172.86 | 3013.70 | 2502.01 |
1.3495 | 200 | 2777.78 | |||
1.3496 | 180 | 2571.49 | |||
1.3497 | 160 | 2318.84 | |||
1.3498 | 160 | 2406.02 | |||
1.3499 | 150 | 2238.50 | |||
1.3500 | 140 | 2187.50 |
Configuration | Operating Wavelength (nm) | RI Range | S (μm/RIU) | FOM (RIU−1) | Reference |
---|---|---|---|---|---|
BK7/Teflon/Au/analyte | - | 1.330–1.355 | 59 | 1552.63 | [51] |
BK7/Cr/Au/GeSe/analyte | 400–1000 | 1.33–1.36 | 3.58 | 14.37 | [52] |
SF14/Teflon/Au/analyte | 500–800 | 1.334–1.337 | 38 | - | [10] |
Fibre core-MgF2/Au/MgF2/analyte | 550–750 | 1.33–1.38 | 5.28 | 156.19 | [12] |
BAF10/Cytop/ZnO/Au/ZnO/analyte | 580–730 | 1.333–1.334 | 60 | 1857 | [53] |
SF10/Cytop/CH3NH3PbBr3/Au/analyte | 620–660 | 1.33–1.34 | 7.29 | 1240 | |
HMM-Au Grating/analyte | 1200–1400 | 1.3333–1.3336 | 30 | 590 | [11] |
HMM-Prism Ag/analyte | 1400–2526 | 1.33–1.334 | 330 | 492 | [49] |
Fibre/Cu/analyte | 750–2700 | 1.33–1.3382 | 400 | - | [50] |
BK7-MgF2-Au-Al2O3-Au/analyte | 700–1950 | 1.3494–1.3507 | 220 | 3013.70 | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gao, Z.; Li, Z.; Wang, J.; Wang, H.; Chen, S.; Shen, J.; Li, C. A High-Sensitivity Sensor Based on Insulator-Metal-Insulator Structure. Photonics 2023, 10, 502. https://doi.org/10.3390/photonics10050502
Chen X, Gao Z, Li Z, Wang J, Wang H, Chen S, Shen J, Li C. A High-Sensitivity Sensor Based on Insulator-Metal-Insulator Structure. Photonics. 2023; 10(5):502. https://doi.org/10.3390/photonics10050502
Chicago/Turabian StyleChen, Xiaoying, Zhuozhen Gao, Zhiqi Li, Jingjing Wang, Hui Wang, Sixue Chen, Jian Shen, and Chaoyang Li. 2023. "A High-Sensitivity Sensor Based on Insulator-Metal-Insulator Structure" Photonics 10, no. 5: 502. https://doi.org/10.3390/photonics10050502
APA StyleChen, X., Gao, Z., Li, Z., Wang, J., Wang, H., Chen, S., Shen, J., & Li, C. (2023). A High-Sensitivity Sensor Based on Insulator-Metal-Insulator Structure. Photonics, 10(5), 502. https://doi.org/10.3390/photonics10050502