Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm
Abstract
:1. Introduction
2. Methods
2.1. Structure and Design Methods
- Generation of metal substrate devices.
- For each device, the -th disk of random size was stacked, and the metal material and SiO2 of the disk were stacked alternately, and the parameters of the disk were .
- The spectral characteristics of the device with structure parameter were calculated by Maxwell equation.
- To determine whether a device satisfies the requirement of target function. If it is satisfied, go to Step 6. If it does not satisfy, go to Step 2.
- The structure parameter of the device is iterated times by the iterative method of PSO, and a new set of devices is obtained and transferred to Step 4.
- Output of the structural parameters and spectral characteristics of the final devices that meet the target function criteria.
- To determine whether the current output device has the 4-layer stack disk, if satisfied, return to Step 2, otherwise, end the process.
2.2. Performance of Solar Energy Absorber
3. Results
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farber, E.A. Selective Surfaces and Solar Absorbers. Sol. Energy 1959, 3, 9–13. [Google Scholar] [CrossRef]
- Kumar, K.K.P.; Mallick, S.; Sakthivel, S. Cobalt-Rich Spinel Oxide-Based Wide Angular Spectral Selective Absorber Coatings for Solar Thermal Conversion Applications. Renew. Energy 2023, 203, 334–344. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, D.; Schaaf, P. A Review on Photothermal Conversion of Solar Energy with Nanomaterials and Nanostructures: From Fundamentals to Applications. Adv. Sustain. Syst. 2022, 6, 2200115. [Google Scholar] [CrossRef]
- Behar, O.; Khellaf, A.; Mohammedi, K. A.; Mohammedi, K. A Review of Mature Solar Thermal Power Stations. In Multivolume Book of Energy and Science; LCC Stadium Press: New York, NY, USA, 2015. [Google Scholar]
- Zhou, Z.; Chen, Q.; Bermel, P. Prospects for High-Performance Thermophotovoltaic Conversion Efficiencies Exceeding the Shockley–Queisser Limit. Energy Convers. Manag. 2015, 97, 63–69. [Google Scholar] [CrossRef]
- Manor, A.; Kruger, N.; Sabapathy, T.; Rotschild, C. Thermally Enhanced Photoluminescence for Heat Harvesting in Photovoltaics. Nat. Commun. 2016, 7, 13167. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Xuan, Q.; Song, Z.; Pei, G. Is It Possible for a Photovoltaic-Thermoelectric Device to Generate Electricity at Night? Solar Energy Mater. Solar Cells 2021, 228, 111136. [Google Scholar] [CrossRef]
- Liu, M.; Steven Tay, N.H.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband Polarization-Independent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Zhang, H.; Tang, P.; Wu, B.; Liu, G. Ultra-Broadband Perfect Absorber Utilizing Refractory Materials in Metal-Insulator Composite Multilayer Stacks. Opt. Express 2019, 27, 11809. [Google Scholar] [CrossRef]
- Shen, F.; Kang, Q.; Wang, J.; Guo, K.; Zhou, Q.; Guo, Z. Dielectric Metasurface-Based High-Efficiency Mid-Infrared Optical Filter. Nanomaterials 2018, 8, 938. [Google Scholar] [CrossRef]
- Jiang, X.; Yuan, H.; Chen, D.; Zhang, Z.; Du, T.; Ma, H.; Yang, J. Metasurface Based on Inverse Design for Maximizing Solar Spectral Absorption. Adv. Opt. Mater. 2021, 9, 2100575. [Google Scholar] [CrossRef]
- Tian, Y.; Han, L.; Yan, L.; Wang, J.; Zhang, B.; Jiao, Z. Optically-Controlled Terahertz Multifunctional Polarization Conversion Metasurface with Reflection and Transmission Modes. Micromachines 2022, 13, 1387. [Google Scholar] [CrossRef]
- Piggott, A.Y.; Lu, J.; Lagoudakis, K.G.; Petykiewicz, J.; Babinec, T.M.; Vučković, J. Inverse Design and Demonstration of a Compact and Broadband On-Chip Wavelength Demultiplexer. Nature Photon. 2015, 9, 374–377. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, T.; Zhong, Q.; Yan, R.; Huang, X. A Near-Ideal Solar Selective Absorber with Strong Broadband Optical Absorption from UV to NIR. Nanotechnology 2020, 31, 315202. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Inverse Design a Patternless Solar Energy Absorber for Maximizing Absorption. Solar Energy Mater. Solar Cells 2022, 244, 111822. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Qi, H.; Yu, Z.-Q.; He, M.-J.; Ren, Y.-T.; Li, Y. Optimization Configuration of Selective Solar Absorber Using Multi-Island Genetic Algorithm. Sol. Energy 2021, 224, 947–955. [Google Scholar] [CrossRef]
- Burlafinger, K.; Vetter, A.; Brabec, C.J. Maximizing Concentrated Solar Power (CSP) Plant Overall Efficiencies by Using Spectral Selective Absorbers at Optimal Operation Temperatures. Solar Energy 2015, 120, 428–438. [Google Scholar] [CrossRef]
- Cao, F.; McEnaney, K.; Chen, G.; Ren, Z. A Review of Cermet-Based Spectrally Selective Solar Absorbers. Energy Environ. Sci. 2014, 7, 1615. [Google Scholar] [CrossRef]
- De Maio, D.; D’Alessandro, C.; Caldarelli, A.; Musto, M.; Russo, R. Solar Selective Coatings for Evacuated Flat Plate Collectors: Optimisation and Efficiency Robustness Analysis. Solar Energy Mater. Solar Cells 2022, 242, 111749. [Google Scholar] [CrossRef]
- Chowdhary, A.K.; Reddy, V.A.; Sikdar, D. Selective Thermal Emitters for High-Performance All-Day Radiative Cooling. J. Phys. D Appl. Phys. 2022, 55, 085504. [Google Scholar] [CrossRef]
- Sheehan, D.P. Infrared Cloaking, Stealth, and the Second Law of Thermodynamics. Entropy 2012, 14, 1915–1938. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients. IEEE Trans. Evol. Computat. 2004, 8, 240–255. [Google Scholar] [CrossRef]
- Ariga, K.; Hill, J.P.; Ji, Q. Layer-by-Layer Assembly as a Versatile Bottom-up Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. Chem. Chem. Phys. 2007, 9, 2319. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Chason, E.; Picraux, S.T.; Poate, J.M.; Borland, J.O.; Current, M.I.; Diaz de la Rubia, T.; Eaglesham, D.J.; Holland, O.W.; Law, M.E.; Magee, C.W.; et al. Ion Beams in Silicon Processing and Characterization. J. Appl. Phys. 1997, 81, 6513–6561. [Google Scholar] [CrossRef]
- Bermel, P.; Ghebrebrhan, M.; Chan, W.; Yeng, Y.X.; Araghchini, M.; Hamam, R.; Marton, C.H.; Jensen, K.F.; Soljačić, M.; Joannopoulos, J.D.; et al. Design and Global Optimization of High-Efficiency Thermophotovoltaic Systems. Opt. Express 2010, 18, A314. [Google Scholar] [CrossRef] [PubMed]
- Palik, E. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, The Netherlands, 1985; ISBN 978-0-08-054721-3. [Google Scholar]
- Li, J.-F.; Lyu, J.-F.; Xu, N. Analysis of High Efficient Solar Thermal Power Generation System. J. Eng. Thermophys. 2020, 41, 1308–1317. [Google Scholar]
Metal Materials | The Number of Disk Layers | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 2 | 90.9% | 404.8 | 114.2 | 199.2 | 113.1 | 40.7 | 304 | ||||
W | 4 | 95.5% | 490.0 | 102.7 | 159.8 | 204.9 | 218.3 | 128.0 | 49.1 | 46.1 | 76.0 | 450 |
Ti | 2 | 93.6% | 416.9 | 119.4 | 181.6 | 129.0 | 40.2 | 319 | ||||
Ti | 4 | 97.6% | 416.9 | 96.9 | 139.6 | 184.3 | 188.9 | 129.0 | 40.2 | 81.0 | 54.5 | 454 |
Cr | 4 | 96.9% | 466.7 | 94.7 | 181.1 | 198.3 | 221.8 | 127.3 | 45.3 | 40.0 | 92.4 | 455 |
V | 4 | 88.9% | 450.1 | 40.6 | 94.1 | 109.0 | 204.9 | 143.6 | 59.0 | 74.1 | 82.0 | 508 |
Value Range of | Value Range of | Value Range of | Each Layer of N | Calculation Time | ||
(300 nm, 600 nm) | (40 nm, 600 nm) | (40 nm, 200 nm) | 20 | 150 | 3000 | 2250 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, X.; Chen, Y.; Zhang, Z.; Yu, Y.; He, X.; Chen, H.; Yang, J.; Zhang, Z.; Yao, X. Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm. Photonics 2023, 10, 546. https://doi.org/10.3390/photonics10050546
Chen J, Li X, Chen Y, Zhang Z, Yu Y, He X, Chen H, Yang J, Zhang Z, Yao X. Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm. Photonics. 2023; 10(5):546. https://doi.org/10.3390/photonics10050546
Chicago/Turabian StyleChen, Jian, Xin Li, Yutai Chen, Zhaojian Zhang, Yang Yu, Xin He, Huan Chen, Junbo Yang, Zhenfu Zhang, and Xiaopeng Yao. 2023. "Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm" Photonics 10, no. 5: 546. https://doi.org/10.3390/photonics10050546
APA StyleChen, J., Li, X., Chen, Y., Zhang, Z., Yu, Y., He, X., Chen, H., Yang, J., Zhang, Z., & Yao, X. (2023). Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm. Photonics, 10(5), 546. https://doi.org/10.3390/photonics10050546