Recent Progress in III–V Photodetectors Grown on Silicon
Abstract
:1. Introduction
2. Blanket Heteroepitaxy of III–V PDs on Si
2.1. Defect-Management Techniques
2.2. GaAs-Based III–V PDs
2.3. InP-Based III–V PDs
2.4. GaSb-Based III–V PDs
2.5. Si Waveguide-Coupled III–V PDs
Year | Material Based | Type | Buffer | Absorption Material | TD Density | Wavelength | Dark Current Density | Responsivity | Speed | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
2012 | GaAs | VPIN | GaAs | InAs/InGaAs DWELL | - | 1280 nm | ~10 μA/cm2 (−1 V) | 5 mA/W | - | [71] |
2017 | GaAs | VPIN | GoVS | InAs/InGaAs QD | 7 × 107 cm−2 | 1300 nm | 0.08 mA/cm2 (−1 V) | 0.94 A/W (−1 V) | 1.5 GHz | [72] |
2018 | GaAs | VPIN | GaP/GaAs | InAs/InGaAs QD | 8.4 × 106 cm−2 | 1280 nm | 0.13 mA/cm2 (−3 V) | 0.23 A/W | 5.5 GHz (−5 V) 10 Gbit/s | [32] |
2020 | GaAs | VPIN | Ge | GaAs | 3.3 × 107 cm−2 | 850 nm | 0.45 μA/cm2 (−2 V) | 0.17 A/W (−2 V) | - | [48] |
2021 | GaAs | VPIN | Ge | InGaAs/AlGaAs QW | 4 × 107 cm−2 | 940 nm | 25 μA/cm2 (−1 V) | 36 mA/W (−2 V) | - | [73] |
2020 | GaAs | APD | GoVS/ InGaAs | InAs DWELL | - | 1310 nm | 67 μA/cm2 (−5 V) | 0.234 A/W (−5 V) | 2.26 GHz 8 Gbit/s | [35] |
2016 | GaAs | QDIP | GaAs | InAs/GaAs QD | ~106 cm−2 | 5–8 μm | 0.89 mA/cm2 (1 V, 69 K) | - | - | [47] |
2018 | GaAs | QD-QCD | GaAs | InAs/GaAs QD | - | 6200 nm | 21.1 nA/cm2 (−0.1 V, 77 K) | 0.59 mA/W (77 K) | - | [74] |
2018 | GaAs | QDIP | GaAs | InAs/InGaAs/ GaAs DWELL | ~3 × 106 cm−2 | 6400 nm | 2.03 μA/cm2 (1 V, 77 K) | 10.9 mA/W (2 V, 77 K) | - | [53] |
2018 | GaAs | QDIP | GaAs | InAs/GaAs QD | ~3 × 108 cm−2 | 6200 nm | 3.2 A/cm2 (0.2 V, 80 K) | 27 mA/W (0.6 V, 32 K) | - | [75] |
2023 | GaAs | QD-QCD | GaAs | InGaAs/GaAs QD | ~107 cm−2 | 6000 nm | ~1 mA/cm2 (−0.1 V, 77 K) | - | - | [76] |
1996 | InP | MSM | GaAs/InP | InGaAs | 2 × 107 cm−2 | 1300 nm | 4–40 mA/cm−2 (5 V) | 0.26 A/W (5 V) | 1.5 GHz (5 V) | [77] |
2012 | InP | VPIN | GaAs/InP | InGaAs | - | 1550 nm | 64 mA/cm2 (−1 V) | 0.57 A/W (−5 V) | 5 GHz (−1 V) | [78] |
2012 | InP | VPIN | GaAs/InP | InGaAs | - | 1550 nm | 625 mA/cm2 (−1 V) | 0.17 A/W (−1 V) | 9 GHz (−4 V) | [70] |
2014 | InP | VPIN | GaAs/InP | InGaAs | - | 1550 nm | 12 mA/cm2 (−1 V) 40 mA/cm2 (−1 V) | 0.02 A/W (−1 V) 0.6 A/W (−1 V) | 14 GHz (−5 V) 15 GHz (−5 V) | [56] |
2017 | InP | VPIN | Ge/GaAs/ InAlAs | InGaAs | - | 1550 nm | 1.3 mA/cm2 (−3 V) | 0.76A/W | 8 GHz (3 V) | [55] |
2021 | InP | VPIN | GaAs/InP | InAs/InGaAs/ InAlGaAs QDash in well | 3.6 × 108 cm−2 | 1550 nm 1310 nm | 2.1 μA/cm2 (−1 V) | 0.35 A/W 0.94 A/W | 10.3 GHz (−5 V) | [33] |
2022 | InP | VPIN | GoVS/InP | InGaAs | 2 × 108 cm−2 | 1550 nm | 0.45 mA/cm2 (−1 V) | 0.72 A/W | 11.2 GHz (−8 V) | [79] |
2019 | InP | APD | Ge/GaAs/ InAlAs | InGaAs | - | 1550 nm 1310 nm | <1 μA/cm2 (−5 V) | ~0.54 A/W (−15 V) ~0.48 A/W (−15 V) | - | [58] |
2018 | InP | MUTC | Ge/GaAs/ InAlAs/ InP | InGaAs | - | 1550 nm | 0.8 mA/cm2 (−3 V) | 0.79 A/W | 9 GHz | [80] |
2020 | InP | MUTC | Ge/GaAs/ InAlAs | InGaAs | - | 1550 nm | 100 mA/cm2 (−3 V) | 0.78 A/W (−4 V) | 28 GHz (−3 V) 40 Gbit/s | [36] |
2018 | GaSb | VPIN | GaSb/AlSb | InAs/GaSb | - | 5.5 μm | 10 A/cm2 (−1 V) | - | - | [63] |
2019 | GaSb | VPIN | GaSb/AlSb | InAs/GaSb | ~2.6 × 108 cm−2 | 3–6 μm | 2.3 A/cm2 (−0.1 V, 70 K) | ~1.2 A/W (−0.1 V, 70 K) | - | [64] |
2018 | GaSb | nBn | GaSb | InAs/InAsSb | ~109 cm−2 | 2–5 μm | 1 mA/cm2 (−0.5 V, 150 K) | - | - | [81] |
2019 | GaSb | nBn | GaSb/AlSb | InAs/InAsSb | 3 × 107 cm−2 | 2.5–6 μm | 1.2 mA/cm2 (−0.1 V, 160 K) | 0.88 A/W (−0.1 V, 200 K) | - | [65] |
2019 | GaSb | nBn | Ge/GaAs/ GaSb | InAsSb | - | 4.0–4.2 μm | 50 μA/cm2 (−0.2 V) | - | - | [82] |
2020 | GaSb | nBn | GaSb/AlSb | InAs/InAsSb | 3 × 107 cm−2 | 2.5–6 μm | 11.4 μA/cm2 (−0.1 V, 110 K) | 0.88 A/W (−0.1 V, 200 K) | - | [34] |
3. Selective Heteroepitaxy of III–V PDs on Si
3.1. Vertically Integrated PDs
3.1.1. Aspect Ratio Trapping
3.1.2. Nano-Ridge Engineering
3.2. Laterally Integrated PDs
3.2.1. Template-Assisted Selective Epitaxy
Free-Space Coupled PDs
Si Waveguide-Coupled PDs
3.2.2. Lateral Aspect Ratio Trapping
Free-Space Coupled PDs
Si Waveguide-Coupled PDs
Year | Device Integration | Substrate | Material | Wavelength (nm) | Dark Current | Dark Current Density | Responsivity | Speed (3 dB Bandwidth) | Waveguide Coupled | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
2020 | ART | SOI | InP/InGaAs | 1450–1650 | 16 nA (−0.5 V) | 33 mA/cm2 | 1.06 AW−1 (1.55 μm) | - | No | [83] |
2021 | ART + NRE | (001) Si | GaAs /InGaAs | - | <1 pA | 1.98 × 10−8 A/cm2 | 0.65AW−1 (1020 nm) | 1.1–1.9 GHz | No | [85] |
2020 | TASE | SOI | InGaAs | 1200–1700 | 1.7 nA (−2 V) | - | 0.68AW−1 (1346 nm) | 25 GHz | No | [84] |
2022 | TASE | SOI | InP/InGaAs | 1200–1700 | 0.04 nA (−1 V) | 0.048 A/cm2 | 0.6 AW−1 (1310 nm) 0.2 AW−1 (1550 nm) | 70 GHz | Si | [27] |
2021 | LART | SOI | InP/InGaAs | 1240–1650 | 0.55 nA | - | 0.3 AW−1 (1550 nm) 0.8 AW−1 (1310 nm) | 40 GHz | No | [86] |
2022 | LART | SOI | InP/InGaAs | 1260–1650 | 60 pA | 0.002 A/cm2 | 0.2 AW−1 (1.5 μm) 0.4 AW−1 (1.3 μm) | 52 GHz | Si | [28] |
4. Summary and Perspective
4.1. Summary
4.2. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamada, K.; Tsuchizawa, T.; Nishi, H.; Kou, R.; Hiraki, T.; Takeda, K.; Fukuda, H.; Ishikawa, Y.; Wada, K.; Yamamoto, T. High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater. 2014, 15, 024603. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Yiu, G.-Z.; Chang, Y.-C. Free-Space Applications of Silicon Photonics: A Review. Micromachines 2022, 13, 990. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Park, H.; Bowers, J.; Lau, K.M. Recent advances in light sources on silicon. Adv. Opt. Photonics 2022, 14, 404–454. [Google Scholar] [CrossRef]
- Mulcahy, J.; Peters, F.H.; Dai, X. Modulators in Silicon Photonics—Heterogenous Integration & and Beyond. Photonics 2022, 9, 40. [Google Scholar] [CrossRef]
- Chen, G.Y.; Yu, Y.; Shi, Y.; Li, N.X.; Luo, W.; Cao, L.; Danner, A.J.; Liu, A.Q.; Zhang, X.L. High-Speed Photodetectors on Silicon Photonics Platform for Optical Interconnect. Laser Photonics Rev. 2022, 16, 2200117. [Google Scholar] [CrossRef]
- Liu, J.-M. (Ed.) Photodetection. In Principles of Photonics; Cambridge University Press: Cambridge, UK, 2016; pp. 362–395. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.F.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Saito, S. Ge-on-Si photonic devices for photonic-electronic integration on a Si platform. IEICE Electron. Express 2014, 11, 20142008. [Google Scholar] [CrossRef]
- Liang, D.; Roshan-Zamir, A.; Fan, Y.H.; Zhang, C.; Wang, B.; Descos, A.; Shen, W.; Yu, K.; Li, C.; Fan, G.; et al. Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing. J. Light. Technol. 2020, 38, 3322–3337. [Google Scholar] [CrossRef]
- Kim, K.; Park, Y. Future Photonics Convergence on Si. In Proceedings of the 9th International Conference on Group IV Photonics (GFP), San Diego, CA, USA, 29–31 August 2012; pp. 1–2. [Google Scholar]
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications [Invited]. Photon. Res. 2017, 5, 417–430. [Google Scholar] [CrossRef]
- Ren, A.; Yuan, L.; Xu, H.; Wu, J.; Wang, Z. Recent progress of III–V quantum dot infrared photodetectors on silicon. J. Mater. Chem. C 2019, 7, 14441–14453. [Google Scholar] [CrossRef]
- Sun, K.Y.; Beling, A. High-Speed Photodetectors for Microwave Photonics. Appl. Sci. 2019, 9, 623. [Google Scholar] [CrossRef]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Ramírez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Gallet, A.; Neel, D.; Hassan, K.; Olivier, S.; Jany, C.; Malhouitre, S.; et al. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Tang, M.C.; Park, J.S.; Wang, Z.C.; Chen, S.M.; Jurczak, P.; Seeds, A.; Liu, H.Y. Integration of III-V lasers on Si for Si photonics. Prog. Quantum Electron. 2019, 66, 1–18. [Google Scholar] [CrossRef]
- Kanazawa, S.; Fujisawa, T.; Takahata, K.; Ito, T.; Ueda, Y.; Kobayashi, W.; Ishii, H.; Sanjoh, H.J.I.P.T.L. Flip-Chip Interconnection Lumped-Electrode EADFB Laser for 100-Gb/s/$\lambda $ Transmitter. IEEE Photonics Technol. Lett. 2015, 27, 1699–1701. [Google Scholar] [CrossRef]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.D.; Groote, A.D.; Koninck, Y.d.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N.; et al. III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef]
- Chen, G.; Goyvaerts, J.; Kumari, S.; Van Kerrebrouck, J.; Muneeb, M.; Uvin, S.; Yu, Y.; Roelkens, G.J.O.E. Integration of high-speed GaAs metal-semiconductor-metal photodetectors by means of transfer printing for 850 nm wavelength photonic interposers. Opt. Express 2018, 26, 6351–6359. [Google Scholar] [CrossRef]
- Lourdudoss, S. Heteroepitaxy and selective area heteroepitaxy for silicon photonics. Curr. Opin. Solid State Mater. Sci. 2012, 16, 91–99. [Google Scholar] [CrossRef]
- Kunert, B.; Mols, Y.; Baryshniskova, M.; Waldron, N.; Schulze, A.; Langer, R. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol. 2018, 33, 093002. [Google Scholar] [CrossRef]
- Li, Q.; Lau, K.M. Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater. 2017, 63, 105–120. [Google Scholar] [CrossRef]
- Bou Sanayeh, M.; Jaeger, A.; Schmid, W.; Tautz, S.; Brick, P.; Streubel, K.; Bacher, G. Investigation of dark line defects induced by catastrophic optical damage in broad-area AlGaInP laser diodes. Appl. Phys. Lett. 2006, 89, 101111. [Google Scholar] [CrossRef]
- Bolkhovityanov, Y.; Pchelyakov, O. GaAs epitaxy on Si substrates: Modern status of research and engineering. Phys.-Uspekhi 2008, 51, 437. [Google Scholar] [CrossRef]
- Han, Y.; Lau, K.M. III–V lasers selectively grown on (001) silicon. J. Appl. Phys. 2020, 128, 200901. [Google Scholar] [CrossRef]
- Yuan, Y.; Tossoun, B.; Huang, Z.; Zeng, X.; Kurczveil, G.; Fiorentino, M.; Liang, D.; Beausoleil, R. Avalanche photodiodes on silicon photonics. J. Semicond. 2022, 43, 021301. [Google Scholar] [CrossRef]
- Wen, P.; Tiwari, P.; Mauthe, S.; Schmid, H.; Sousa, M.; Scherrer, M.; Baumann, M.; Bitachon, B.I.; Leuthold, J.; Gotsmann, B.; et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 2022, 13, 909. [Google Scholar] [CrossRef]
- Xue, Y.; Han, Y.; Wang, Y.; Li, J.; Wang, J.; Zhang, Z.; Cai, X.; Tsang, H.K.; Lau, K.M. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica 2022, 9, 1219–1226. [Google Scholar] [CrossRef]
- Fang, S.F.; Adomi, K.; Iyer, S.; Morkoç, H.; Zabel, H.; Choi, C.; Otsuka, N. Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 1990, 68, R31–R58. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Lee, A.; Pozzi, F.; Seeds, A. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Shang, C.; Hughes, E.; Wan, Y.; Dumont, M.; Koscica, R.; Selvidge, J.; Herrick, R.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 2021, 8, 749–754. [Google Scholar] [CrossRef]
- Inoue, D.; Wan, Y.; Jung, D.; Norman, J.; Shang, C.; Nishiyama, N.; Arai, S.; Gossard, A.; Bowers, J. Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si. Appl. Phys. Lett. 2018, 113, 093506. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Wei, L.; Huang, J.; Lin, L.; Tsang, H.; Lau, K. Telecom InP-based quantum dash photodetectors grown on Si. Appl. Phys. Lett. 2021, 118, 141101. [Google Scholar] [CrossRef]
- Carrington, P.; Delli, E.; Letka, V.; Bentley, M.; Hodgson, P.; Repiso Menéndez, E.; Hayton, J.; Craig, A.; Lu, Q.; Beanland, R.; et al. Heteroepitaxial Integration of InAs/InAsSb Type-II Superlattice Barrier Photodetectors onto Silicon. In Proceedings of the SPIE 11503, Infrared Sensors, Devices, and Applications X, Online, 24 August–4 September 2020; pp. 15–23. [Google Scholar]
- Chen, B.; Wan, Y.; Xie, Z.; Huang, J.; Zhang, N.; Shang, C.; Norman, J.; Li, Q.; Yeyu, T.; Lau, K.; et al. Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si. ACS Photonics 2020, 7, 528–533. [Google Scholar] [CrossRef]
- Sun, K.; Gao, J.; Jung, D.; Bowers, J.; Beling, A. 40 Gbit/s waveguide photodiode using III-V on silicon heteroepitaxy. Opt. Lett. 2020, 45, 2954–2956. [Google Scholar] [CrossRef]
- Chadi, D.J. Stabilities of single-layer and bilayer steps on Si(001) surfaces. Phys. Rev. Lett. 1987, 59, 1691–1694. [Google Scholar] [CrossRef]
- Kawabe, M.; Ueda, T. Molecular Beam Epitaxy of Controlled Single Domain GaAs on Si (100). Jpn. J. Appl. Phys. 1986, 25, L285. [Google Scholar] [CrossRef]
- Volz, K.; Beyer, A.; Witte, W.; Ohlmann, J.; Németh, I.; Kunert, B.; Stolz, W. GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration. J. Cryst. Growth 2011, 315, 37–47. [Google Scholar] [CrossRef]
- Martin, M.; Caliste, D.; Cipro, R.; Alcotte, R.; Moeyaert, J.; David, S.; Bassani, F.; Cerba, T.; Bogumilowicz, Y.; Sanchez, E.; et al. Toward the III–V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001). Appl. Phys. Lett. 2016, 109, 253103. [Google Scholar] [CrossRef]
- Li, Q.; Ng, K.W.; Lau, K.M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl. Phys. Lett. 2015, 106, 072105. [Google Scholar] [CrossRef]
- Tang, M.; Chen, S.; Wu, J.; Jiang, Q.; Kennedy, K.; Jurczak, P.; Liao, M.; Beanland, R.; Seeds, A.; Liu, H. Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 50–56. [Google Scholar] [CrossRef]
- Jung, D.; Herrick, R.; Norman, J.; Turnlund, K.; Jan, C.; Feng, K.; Gossard, A.C.; Bowers, J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett. 2018, 112, 153507. [Google Scholar] [CrossRef]
- Jung, D.; Callahan, P.G.; Shin, B.; Mukherjee, K.; Gossard, A.C.; Bowers, J.E. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 2017, 122, 225703. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Q.; Geng, Y.; Shi, B.; Lau, K.M. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl. Phys. Lett. 2015, 107, 081106. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Tang, C.W.; Lau, K.M. Material and device characteristics of metamorphic In0.53Ga 0.47As MOSHEMTs grown on GaAs and Si substrates by MOCVD. IEEE Trans. Electron. Devices 2013, 60, 4112–4118. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Q.; Chen, S.; Tang, M.; Mazur, Y.; Maidaniuk, Y.; Benamara, M.; Semtsiv, M.; Masselink, W.; Sablon, K.; et al. Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates. ACS Photonics 2016, 3, 749–753. [Google Scholar] [CrossRef]
- Mehdi, H.; Martin, M.; David, S.; Hartmann, J.-M.; Moeyaert, J.; Touraton, M.; Jany, C.; Virot, L.; Fonseca, J.; Coignus, J.; et al. Monolithic integration of GaAs p-i-n photodetectors grown on 300 mm silicon wafers. AIP Adv. 2020, 10, 125204. [Google Scholar] [CrossRef]
- Jung, D.; Norman, J.; Wan, Y.T.; Liu, S.T.; Herrick, R.; Selvidge, J.; Mukherjee, K.; Gossard, A.C.; Bowers, J.E. Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy. Phys. Status Solidi A-Appl. Mater. Sci. 2019, 216, 1800602. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Q.; Liu, A.Y.; Chow, W.W.; Gossard, A.C.; Bowers, J.E.; Hu, E.L.; Lau, K.M. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl. Phys. Lett. 2016, 108, 221101. [Google Scholar] [CrossRef]
- Kwoen, J.; Jang, B.; Lee, J.; Kageyama, T.; Watanabe, K.; Arakawa, Y. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express 2018, 26, 11568–11576. [Google Scholar] [CrossRef]
- Ledentsov, N.N. Quantum dot lasers: The birth and future trends. Semiconductors 1999, 33, 946–950. [Google Scholar] [CrossRef]
- Chen, W.; Deng, Z.; Guo, D.; Chen, Y.; Mazur, Y.; Maidaniuk, Y.; Benamara, M.; Salamo, G.; Liu, H.; Wu, J.; et al. Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate. J. Light. Technol. 2018, 36, 2572–2581. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent Advances in Avalanche Photodiodes. J. Light. Technol. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Sun, K.; Jung, D.; Shang, C.; Liu, A.; Bowers, J.; Beling, A. Low-dark current III-V photodiodes grown on silicon substrate. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017; pp. 95–96. [Google Scholar]
- Feng, S.; Poon, A.; Lau, K. High-Speed InGaAs Photodetectors by Selective-Area MOCVD Toward Optoelectronic Integrated Circuits. Sel. Top. Quantum Electron. IEEE J. 2014, 20, 36–42. [Google Scholar] [CrossRef]
- Shi, B.; Han, Y.; Li, Q.; Lau, K.M. 1.55-μm Lasers Epitaxially Grown on Silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1900711. [Google Scholar] [CrossRef]
- Yuan, Y.; Jung, D.; Sun, K.; Zheng, J.; Jones, A.; Bowers, J.; Campbell, J. III-V on silicon avalanche photodiodes by heteroepitaxy. Opt. Lett. 2019, 44, 3538. [Google Scholar] [CrossRef]
- Ishibashi, T.; Ito, H. Uni-traveling-carrier photodiodes. J. Appl. Phys. 2020, 127, 031101. [Google Scholar] [CrossRef]
- Adamo, G.; Busacca, A. Time Of Flight measurements via two LiDAR systems with SiPM and APD. In Proceedings of the 2016 AEIT International Annual Conference (AEIT), Capri, Italy, 5–7 October 2016; pp. 1–5. [Google Scholar]
- Zhang, C.; Bowers, J.E. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt. Fiber Technol. 2018, 44, 2–12. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, W.; Lau, K.M. A strain relief mode at interface of GaSb/GaAs grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2011, 99, 221917. [Google Scholar] [CrossRef]
- González Burguete, C. Direct growth of InAsGaSb type II superlattice photodiodes on silicon substrates. IET Optoelectron. 2017, 12, 2–4. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, D.; González Burguete, C.; Xie, Z.; Huang, J.; Liu, H.; Wu, J.; Chen, B. Demonstration of Si based InAs/GaSb type-II superlattice p-i-n photodetector. Infrared Phys. Technol. 2019, 101, 133–137. [Google Scholar] [CrossRef]
- Delli, E.; Letka, V.; Hodgson, P.; Repiso Menéndez, E.; Hayton, J.; Craig, A.; Lu, Q.; Beanland, R.; Krier, A.; Marshall, A.; et al. Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Silicon. ACS Photonics 2019, 6, 538–544. [Google Scholar] [CrossRef]
- Maimon, S.; Wicks, G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Evirgen, A.; Abautret, J.; Perez, J.-P.; Cordat, A.; Nedelcu, A.; Christol, P. Midwave infrared InSb nBn photodetector. Electron. Lett. 2014, 50, 1472–1473. [Google Scholar] [CrossRef]
- Liu, A.Y.; Srinivasan, S.; Norman, J.C.; Gossard, A.C.; Bowers, J.E. Quantum dot lasers for silicon photonics. Photonics Res. 2015, 3, B1–B9. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Y.; Bi, Y.; Pan, J.; Yu, H.; Zhang, Y.; Sun, J.; Sun, X.; Chong, M. Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications. Opt. Lett. 2018, 43, 86–89. [Google Scholar] [CrossRef]
- Feng, S.; Lau, K.; Poon, A. Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors. Opt. Lett. 2012, 37, 4035–4037. [Google Scholar] [CrossRef]
- Sandall, I.; Ng, J.; David, J.P.R.; Tan, C.; Wang, T.; Liu, H. 1300 nm Wavelength InAs Quantum Dot Photodetector Grown on Silicon. Opt. Express 2012, 20, 10446–10452. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, Z.; Chao, R.; Norman, J.; Jung, D.; Shang, C.; Li, Q.; Kennedy, M.; Liang, D.; Zhang, C.; et al. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express 2017, 25, 27715. [Google Scholar] [CrossRef]
- Mehdi, H.; Martin, M.; Jany, C.; Virot, L.; Hartmann, J.-M.; Fonseca, J.; Moeyaert, J.; Gaillard, P.; Coignus, J.; Leroux, C.; et al. Monolithically integrated InGaAs/AlGaAs multiple quantum well photodetectors on 300 mm Si wafers. AIP Adv. 2021, 11, 085028. [Google Scholar] [CrossRef]
- Huang, J.; Guo, D.; Deng, Z.; Chen, W.; Liu, H.; Wu, J.; Chen, B. Mid-wave Infrared Quantum Dot Quantum Cascade Photodetector Monolithically Grown on Silicon Substrate. J. Light. Technol. 2018, 36, 4033–4038. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Arakawa, Y.; Iwamoto, S.; Kwoen, J.; Izumi, M.; Doe, T. InAs/GaAs quantum dot infrared photodetectors on on-axis Si (100) substrates. Electron. Lett. 2018, 54, 1395–1397. [Google Scholar] [CrossRef]
- Guo, D.; Huang, J.; Benamara, M.; Mazur, Y.I.; Deng, Z.; Salamo, G.J.; Liu, H.; Chen, B.; Wu, J. High Operating Temperature Mid-Infrared InGaAs/GaAs Submonolayer Quantum Dot Quantum Cascade Detectors on Silicon. IEEE J. Quantum Electron. 2023, 59, 2300106. [Google Scholar] [CrossRef]
- Bartels, A.; Peiner, E.; Tang, G.P.; Klockenbrink, R.; Wehmann, H.H.; Schlachetzki, A. Performance of InGaAs metal-semiconductor-metal photodetectors on Si. IEEE Photonics Technol. Lett. 1996, 8, 670–672. [Google Scholar] [CrossRef]
- Gao, Y.; Zhong, Z.; Feng, S.; Geng, Y.; Liang, H.; Poon, A.W.; Lau, K.M. High-Speed Normal-Incidence p-i-n InGaAs Photodetectors Grown on Silicon Substrates by MOCVD. IEEE Photonics Technol. Lett. 2012, 24, 237–239. [Google Scholar] [CrossRef]
- Song, B.; Shi, B.; Šuran-Brunelli, S.T.; Zhu, S.; Klamkin, J. Low Dark Current and High Speed InGaAs Photodiode on CMOS-Compatible Silicon by Heteroepitaxy. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 3803808. [Google Scholar] [CrossRef]
- Sun, K.; Jung, D.; Shang, C.; Liu, A.; Morgan, J.; Zang, J.; Li, Q.; Klamkin, J.; Bowers, J.; Beling, A. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt. Express 2018, 26, 13605. [Google Scholar] [CrossRef]
- Durlin, Q.; Perez, J.-P.; Cerutti, L.; Rodriguez, J.-B.; Cerba, T.; Baron, T.; Tournié, E.; Christol, P. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Phys. Technol. 2018, 96, 39–43. [Google Scholar] [CrossRef]
- Fastenau, J.; Lubyshev, D.; Nelson, S.; Kattner, M.; Frey, P.; Fetters, M.; Zeng, J.; Liu, A.; Morgan, A.; Edwards, S.; et al. GaSb-Based Infrared Photodetector Structures Grown on Ge-Si Substrates via Metamorphic Buffers. In Proceedings of the SPIE 11002, Infrared Technology and Applications XLV, Baltimore, MD, USA, 20–24 August 2023. [Google Scholar]
- Xue, Y.; Han, Y.; Wang, Y.; Zhang, Z.; Tsang, H.K.; Lau, K.M. Bufferless III-V photodetectors directly grown on (001) silicon-on-insulators. Opt. Lett. 2020, 45, 1754–1757. [Google Scholar] [CrossRef]
- Mauthe, S.; Baumgartner, Y.; Sousa, M.; Ding, Q.; Rossell, M.; Schenk, A.; Czornomaz, L.; Moselund, K. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat. Commun. 2020, 11, 4565. [Google Scholar] [CrossRef]
- Ozdemir, C.I.; De Koninck, Y.; Yudistira, D.; Kuznetsova, N.; Baryshnikova, M.; Van Thourhout, D.; Kunert, B.; Pantouvaki, M.; Van Campenhout, J. Low Dark Current and High Responsivity 1020nm InGaAs/GaAs Nano-Ridge Waveguide Photodetector Monolithically Integrated on a 300-mm Si Wafer. J. Light. Technol. 2021, 39, 5263–5269. [Google Scholar] [CrossRef]
- Xue, Y.; Han, Y.; Tong, Y.; Yan, Z.; Wang, Y.; Zhang, Z.; Tsang, H.K.; Lau, K.M. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 2021, 8, 1204–1209. [Google Scholar] [CrossRef]
- Yu, H.; Qiang, L.; Lau, K.M. Fin-Array Tunneling Trigger With Tunable Hysteresis on (001) Silicon Substrate. IEEE Electron. Device Lett. 2017, 38, 556–559. [Google Scholar]
- Shi, Y.; Wang, Z.; Campenhout, J.V.; Pantouvaki, M.; Thourhout, D.V. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica 2017, 4, 1468. [Google Scholar] [CrossRef]
- Yu, H.; Qiang, L.; Lau, K.M. Tristate Memory Cells Using Double-Peaked Fin-Array III-V Tunnel Diodes Monolithically Grown on (001) Silicon Substrates. IEEE Trans. Electron. Devices 2017, 64, 4078–4083. [Google Scholar]
- Han, Y.; Li, Q.; Chang, S.P.; Hsu, W.D.; Lau, K.M. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon. Appl. Phys. Lett. 2016, 108, 242105. [Google Scholar] [CrossRef]
- Yu, H.; Xue, Y.; Yan, Z.; Lau, K. Selectively Grown III-V Lasers for Integrated Si-Photonics. J. Light. Technol. 2020, 39, 940–948. [Google Scholar] [CrossRef]
- Baryshnikova, M.; Mols, Y.; Ishii, Y.; Alcotte, R.; Han, H.; Hantschel, T.; Richard, O.; Pantouvaki, M.; Van Campenhout, J.; Van Thourhout, D.; et al. Nano-Ridge Engineering of GaSb for the Integration of InAs/GaSb Heterostructures on 300 mm (001) Si. Crystals 2020, 10, 330. [Google Scholar] [CrossRef]
- Colucci, D.; Baryshnikova, M.; Shi, Y.; Mols, Y.; Muneeb, M.; Koninck, Y.; Yudistira, D.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; et al. Unique design approach to realize an O-band laser monolithically integrated on 300 mm Si substrate by nano-ridge engineering. Opt. Express 2022, 30, 13510. [Google Scholar] [CrossRef]
- Kunert, B.; Guo, W.; Mols, Y.; Tian, B.; Wang, Z.; Shi, Y.; Thourhout, D.V.; Pantouvaki, M.; Campenhout, J.V.; Langer, R. III/V nano ridge structures for optical applications on patterned 300mm silicon substrate. Appl. Phys. Lett. 2016, 109, 511–842. [Google Scholar] [CrossRef]
- Kunert, B.; Mols, Y.; Guo, W. Integration of III/V Hetero-Structures by Selective Area Growth on Si for Nano- and Optoelectronics. ECS Trans. 2016, 75, 409–419. [Google Scholar] [CrossRef]
- Shi, Y.; Kunert, B.; Koninck, Y.; Pantouvaki, M.; Van Campenhout, J.; Thourhout, D. Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform. Opt. Express 2019, 27, 37781–37794. [Google Scholar] [CrossRef]
- Schmid, H.; Borg, M.; Moselund, K.; Gignac, L.; Breslin, C.M.; Bruley, J.; Cutaia, D.; Riel, H. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 2015, 106, 233101. [Google Scholar] [CrossRef]
- Moselund, K.E.; Schmid, H.; Bessire, C.; Bjork, M.T.; Ghoneim, H.; Riel, H. InAs–Si Nanowire Heterojunction Tunnel FETs. IEEE Electron. Device Lett. 2012, 33, 1453–1455. [Google Scholar] [CrossRef]
- Wirths, S.; Mayer, B.; Schmid, H.; Lörtscher, E.; Sousa, M.; Riel, H.; Moselund, K. Room Temperature Lasing from Monolithically Integrated Gaas Microdisks on Si. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017; p. 1. [Google Scholar]
- Mayer, B.; Wirths, S.; Mauthe, S.; Staudinger, P.; Sousa, M.; Winiger, J.; Schmid, H.; Moselund, K. Microcavity Lasers on Silicon by Template-Assisted Selective Epitaxy of Microsubstrates. IEEE Photonics Technol. Lett. 2019, 31, 1021–1024. [Google Scholar] [CrossRef]
- Triviño, N.V.; Mauthe, S.; Scherrer, M.; Tiwari, P.; Wen, P.; Sousa, M.; Schmid, H.; Moselund, K.E. In-plane monolithic integration of scaled III-V photonic devices. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Burssels, Belgium, 6–10 December 2020; pp. 1–3. [Google Scholar]
- Mauthe, S.; Tiwari, P.; Scherrer, M.; Caimi, D.; Sousa, M.; Schmid, H.; Moselund, K.; Triviño, N. Hybrid III-V Silicon Photonic Crystal Cavity Emitting at Telecom Wavelengths. Nano Lett. 2020, 20, 8768–8772. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, H.; Lin, L.; Xue, Y.; Chao, M.; Ng, W.; Wong, K.; Lau, K. A monolithic InP/SOI platform for integrated photonics. Light Sci. Appl. 2021, 10, 200. [Google Scholar] [CrossRef]
- Ito, H.; Kodama, S.; Muramoto, Y.; Furuta, T.; Nagatsuma, T.; Ishibashi, T. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 709–727. [Google Scholar] [CrossRef]
Blanket Heteroepitaxy | Selective Heteroepitaxy | |
---|---|---|
TD density | GaAs/Si~106 cm−2 InP/Si~108 cm−2 GaSb/Si~107 cm−2 | Potentially TD free |
Dark current density | ~10−7–100 A/cm2 | ~10−8–10−2 A/cm2 |
Speed | ~1.5–28 GHz | ~1.1–70 GHz |
Wavelength | GaAs-based: 850~1310 nm & around 6 μm InP-based: 1310~1550 nm GaSb-based: 2~6.4 μm | 1200~1700 nm |
PD Types | Almost all types of III–V PDs | Mainly PIN |
Si-Waveguide PDs | Inefficient butt coupling | Efficient butt and evanescent coupling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Fu, D.; Jin, Y.; Han, Y. Recent Progress in III–V Photodetectors Grown on Silicon. Photonics 2023, 10, 573. https://doi.org/10.3390/photonics10050573
Zeng C, Fu D, Jin Y, Han Y. Recent Progress in III–V Photodetectors Grown on Silicon. Photonics. 2023; 10(5):573. https://doi.org/10.3390/photonics10050573
Chicago/Turabian StyleZeng, Cong, Donghui Fu, Yunjiang Jin, and Yu Han. 2023. "Recent Progress in III–V Photodetectors Grown on Silicon" Photonics 10, no. 5: 573. https://doi.org/10.3390/photonics10050573
APA StyleZeng, C., Fu, D., Jin, Y., & Han, Y. (2023). Recent Progress in III–V Photodetectors Grown on Silicon. Photonics, 10(5), 573. https://doi.org/10.3390/photonics10050573