Crystalline Phase, Cross-Section, and Temporal Characteristics of Erbium-Ion in Lu3Ga5O12 Crystal
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. X-ray Diffraction and Crystalline Phase
3.2. Er3+ Emission Characteristics and 980 nm Upconversion Mechanism
3.3. ECS and ACS Spectra of Erbium-Ion in LuGG Crystal
3.4. Temporal Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- You, Z.; Li, J.; Wang, Y.; Chen, H.; Zhu, Z.; Tu, C.Y. Spectroscopic and laser properties of Er:LuGG crystal at ~2.8 µm. Appl. Phys. Exp. 2019, 12, 052019. [Google Scholar] [CrossRef]
- Liu, M.-H.; Shao, Y.-X.; Piao, R.-Q.; Zhang, D.-L.; Wang, Y. Sellmeier dispersion and spectroscopic properties of Er3+-doped lutetium gallium garnet single crystal. Results Phys. 2021, 30, 104876. [Google Scholar] [CrossRef]
- Venkatramu, V.; Giarola, M.; Mariotto, G.; Enzo, S.; Polizzi, S.; Jayasankar, C.K.; Piccinelli, F.; Bettinelli, M.; Speghini, A. Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: Interesting materials for light-emitting devices. Nanotechnology 2010, 21, 175703. [Google Scholar] [CrossRef] [PubMed]
- Venkatramu, V.; Falcomer, D.; Speghini, A.; Bettinelli, M.; Jayasankar, C. Synthesis and luminescence properties of Er3+-doped Lu3Ga5O12 nanocrystals. J. Lumin. 2010, 128, 811–813. [Google Scholar] [CrossRef]
- Rathaiah, M.; Haritha, P.; Linganna, K.; Monteseguro, V.; Martín, I.R.; Lozano-Gorrín, A.D.; Babu, P.; Jayasankar, C.K.; Lavín, V.; Venkatramu, V. Infrared-to-Visible Light Conversion in Er3+-Yb3+:Lu3Ga5O12Nanogarnets. Chem. Phys. Chem. 2015, 16, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Hao, L.; Zhang, H.; Yu, H.; Wang, Y.; Wang, J.; Tian, X.; Zhou, Z.; Liu, J.; Boughton, R.I. Lu3Ga5O12 crystal: Exploration of new laser host material for the ytterbium ion. J. Opt. Soc. Am. B 2012, 29, 2320–2328. [Google Scholar] [CrossRef]
- Han, W.J.; Ma, Y.J.; Dou, X.D.; Wang, L.S.; Xu, H.H.; Liu, J.H. Passive Q-switching laser properties of Yb:Re3Ga5O12 (Re = Y, Lu, Gd) garnets with GaAs semiconductor saturable absorber. Opt. Commun. 2018, 423, 1–5. [Google Scholar] [CrossRef]
- Serres, J.M.; Loiko, P.; Mateos, X.; Yu, H.H.; Zhang, H.J.; Liu, J.H.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguilo, M.; et al. Q-switching of Yb:YGG, Yb:LuGG and Yb:CNGG lasers by a graphene saturable absorber. Opt. Quant. Electron. 2016, 48, 197. [Google Scholar] [CrossRef]
- Han, W.; Wu, K.; Tian, X.; Xia, L.; Zhang, H.; Liu, J. Laser performance of ytterbium-doped gallium garnets: Yb:Re3Ga5O12 (Re = Y, Gd, Lu). Opt. Mater. Express 2013, 3, 920–927. [Google Scholar] [CrossRef]
- Liu, J.; Tian, X.; Zhou, Z.; Wu, K.; Han, W.; Zhang, H. Efficient laser operation of Yb:Lu3Ga5O12 garnet crystal. Opt. Lett. 2012, 37, 2388–2390. [Google Scholar] [CrossRef]
- He, J.; Mei, Y.; Zheng, W.-C.; Liu, H.-G. Thermal shifts and electron-phonon coupling parameters for Cr3+-doped Lu3Al5O12 and Lu3Ga5O12 garnet crystals. Optik 2018, 171, 304–307. [Google Scholar] [CrossRef]
- Haritha, P.; Viswanath, C.D.; Linganna, K.; Babu, P.; Jayasankar, C.; Lavín, V.; Venkatramu, V. Nanocrystalline Sm3+-doped Lu3Ga5O12 garnets: An intense orange-reddish luminescent material for white light emitting devices. J. Lumin. 2016, 179, 533–538. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Q.; Yang, H.; Luo, J.; Sun, D.; Gu, C.; Yin, S. Crystal growth and characterization of Ho-doped Lu3Ga5O12 for 2 μm laser. Mater. Chem. Phys. 2013, 138, 162–166. [Google Scholar] [CrossRef]
- Wu, K.; Yao, B.; Zhang, H.; Yu, H.; Wang, Z.; Wang, J.; Jiang, M. Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method. J. Cryst. Growth 2010, 312, 3631–3636. [Google Scholar] [CrossRef]
- Novoselov, A.; Yoshikawa, A.; Nikl, M.; Pejchal, J.; Fukuda, T. Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12. J. Cryst. Growth 2006, 292, 236–238. [Google Scholar] [CrossRef]
- Lifante, G.; Núñez, L.; Cussó, F. Polarization effects on the line-strength calculations of Er3+-doped LiNbO3. Appl. Phys. B Laser Opt. 1996, 62, 485–491. [Google Scholar] [CrossRef]
- Miniscalco, W.J.; Quimby, R.S. General procedure for the analysis of Er3+ cross sections. Opt. Lett. 1991, 16, 258–260. [Google Scholar] [CrossRef]
- Martin, R.M.; Quimby, R.S. Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses. J. Opt. Soc. Am. B 2006, 23, 1770–1775. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Eggleston, J.; DeShazer, L.; Kangas, K. Characteristics and kinetics of laser-pumped Ti:sapphire oscillators. IEEE J. Quantum Electron. 1988, 24, 1009–1015. [Google Scholar] [CrossRef]
- Pernas, P.L.; Cantelar, E. Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices. Phys. Scr. 2005, 2005, 93. [Google Scholar] [CrossRef]
- McCumber, D.E. Theory of Phonon-Terminated Optical Masers. Phys. Rev. 1964, 134, A299–A306. [Google Scholar] [CrossRef]
- Lazaro, J.; Valles, J.; Rebolledo, M. In situ measurement of absorption and emission cross sections in Er/sup 3+/-doped waveguides for transitions involving thermalized states. IEEE J. Quantum Electron. 1999, 35, 827–831. [Google Scholar] [CrossRef]
- Rebolledo, M.A.; Vallés, J.A.; Setién, S. In situ measurement of polarization-resolved emission and absorption cross-sections of Er-doped Ti:LiNbO3 waveguides. J. Opt. Soc. Am. B 2002, 19, 1516–1520. [Google Scholar] [CrossRef]
- Lazaro, J.A.; Valles, J.A.; Rebolledo, M.A. Determination of emission and absorption cross-sections of Er3+ in Ti:LiNbO3 waveguides from transversal fluorescence spectra. Pure Appl. Opt. 1998, 7, 1363–1371. [Google Scholar] [CrossRef]
- Ju, J.J.; Lee, M.-H.; Cha, M.; Seo, H.J. Energy transfer in clustered sites of Er3+ ions in LiNbO3 crystals. J. Opt. Soc. Am. B 2003, 20, 1990–1995. [Google Scholar] [CrossRef]
- Gill, D.M.; McCaughan, L.; Wright, J.C. Spectroscopic site determinations in erbium-doped lithium niobate. Phys. Rev. B 1996, 53, 2334–2344. [Google Scholar] [CrossRef]
- Dierolf, V.; Koerdt, M. Combined excitation-emission spectroscopy of Er3+ ions in stoichiometric LiNbO3: The site selectivity of direct and up conversion excitation processes. Phys. Rev. B 2000, 61, 8043–8052. [Google Scholar] [CrossRef]
- Catlow, C.R.A.; Chadwick, A.V.; Greaves, G.N.; Moroney, L.M. Direct observations of the dopant environment in fluorites using EXAFS. Nature 1984, 312, 601–604. [Google Scholar] [CrossRef]
- Petit, V.; Camy, P.; Doualan, J.L.; Portier, X.; Moncorgé, R. Spectroscopy of Yb3+:CaF2: From isolated centers to clusters. Phys. Rev. B 2008, 78, 085131. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Favilla, E.; Tonelli, M.; Richards, B.S. Single crystal monolithic upconverter solar cell device tandems with integrated optics. J. Opt. Soc. Am. B 2022, 39, 239–247. [Google Scholar] [CrossRef]
- Boccolini, A.; Favilla, E.; Tonelli, M.; Richards, B.S.; Thomson, R.R. Highly efficient upconversion in Er3+ doped BaY2F8 single crystals: Dependence of quantum yield on excitation wavelength and thickness. Opt. Express 2015, 23, A903–A915. [Google Scholar] [CrossRef]
Band at | Parameter | Value | Band at | Parameter | Value |
---|---|---|---|---|---|
0.53 μm (2H11/2) + 0.56 μm (4S3/2) G: 4I15/2 L: 4S3/2 U:2H11/2 | PHG (s−1) | 2785.9 ± 563.7 | 0.65 μm L: 4I15/2 U: 4F9/2 | Prad (s−1) | 1760.4 ± 318.8 |
PSG (s−1) | 3340.9 ± 471.4 | λh/λ0/λl (nm) | 643.5/663/683 | ||
λh/λ0/λl (nm) | 517.5/523.5/537 | δGUL cm−1) | 15,083.0 ± 4.5 | ||
λh/λ0/λl (nm) | 541/546.5/559.5 | δGU (cm−1) | 114.2 ± 5.9 | ||
δGUL (cm−1) | 803.9 ± 35.0 | δGL (cm−1) | 63.1 ± 3.2 | ||
δGLG (cm−1) | 18,298.3 ± 6.7 | λE (nm) | 653.0 ± 0.7 | ||
δGG (cm−1) | 64.6 ± 5.8 | 0.98 μm L: 4I15/2 U: 4I11/2 | Prad (s−1) | 341.5 ± 47.2 | |
δGU (cm−1) | 44.3 ± 5.3 | λh/λ0/λl (nm) | 961/976/1023 | ||
δGL (cm−1) | 186.0 ± 33.8 | δGUL (cm−1) | 10,245.9 ± 5.2 | ||
Prad (s−1) | 3311.2 ± 476.8 | δGU (cm−1) | 31.9 ± 2.1 | ||
λE (nm) | 532.2 ± 0.4 | δGL (cm−1) | 67.2 ± 1.4 | ||
λE (nm) | 980.6 ± 0.8 | ||||
1.53 μm L: 4I15/2 U: 4I13/2 | Prad (s−1) | 354.3 ± 47.5 | 2.8 μm L: 4I13/2 U: 4I11/2 | Prad (s−1) | 59.4 ± 8.0 |
λh/λ0/λl (nm) | 1454/1531/1655 | λh/λ0/λl (nm) | 2576/2700/2969 | ||
δGUL (cm−1) | 6531.7 ± 2.1 | δGUL (cm−1) | 3714.2 ± 1.5 | ||
δGU (cm−1) | 57.7 ± 0.7 | δGU (cm−1) | 31.9 ± 2.1 | ||
δGL (cm−1) | 69.4 ± 0.6 | δGL (cm−1) | 57.7 ± 0.7 | ||
λE (nm) | 1534.8 ± 0.7 | λE (nm) | 2719.7 ± 5.0 |
Erbium-Ion Transitions | Σe@λ (×10−20 cm2) | Σa@λ nm (×10−20 cm2) | |
---|---|---|---|
McCumber | Absorption Spectrum | ||
4I15/2↔4I13/2 | 0.27@1468 nm | 1.36@1468 nm | 1.79@1468 nm |
1.20@1531 nm | 1.42@1531 nm | 1.09@1531 nm | |
4I11/2↔4I13/2 | 0.47@2635 nm | 0.84@2635 nm | - |
0.53@2815 nm | 0.29@2815 nm | - | |
4I15/2↔4I11/2 | 0.19@967 nm | 0.61@967 nm | 0.65@967 nm |
0.39@1023 nm | 0.08@1023 nm | 0.07@1023 nm | |
4I15/2↔4F9/2 | 0.30@648 nm | 0.56@648 nm | 0.45@648 nm |
0.65@655 nm | 0.55@655 nm | 0.53@655 nm | |
0.90@670 nm | 0.14@670 nm | 0.16@670 nm | |
0.90@674 nm | 0.09@674 nm | 0.13@674 nm | |
4I15/2↔4S3/2 | 0.53@541 nm | 0.13@541 nm | 0.15@541 nm |
1.43@554 nm | 0.05@554 nm | 0.07@554 nm | |
1.22@558 nm | 0.03@558 nm | 0.04@558 nm | |
4I15/2↔2H11/2 | 0.04@518 nm | 0.50@518 nm | 0.50@518 nm |
0.13@524 nm | 0.60@524 nm | 0.52@524 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, D.-L.; Wang, Y. Crystalline Phase, Cross-Section, and Temporal Characteristics of Erbium-Ion in Lu3Ga5O12 Crystal. Photonics 2023, 10, 586. https://doi.org/10.3390/photonics10050586
Zhang P, Zhang D-L, Wang Y. Crystalline Phase, Cross-Section, and Temporal Characteristics of Erbium-Ion in Lu3Ga5O12 Crystal. Photonics. 2023; 10(5):586. https://doi.org/10.3390/photonics10050586
Chicago/Turabian StyleZhang, Pei, De-Long Zhang, and Yan Wang. 2023. "Crystalline Phase, Cross-Section, and Temporal Characteristics of Erbium-Ion in Lu3Ga5O12 Crystal" Photonics 10, no. 5: 586. https://doi.org/10.3390/photonics10050586
APA StyleZhang, P., Zhang, D. -L., & Wang, Y. (2023). Crystalline Phase, Cross-Section, and Temporal Characteristics of Erbium-Ion in Lu3Ga5O12 Crystal. Photonics, 10(5), 586. https://doi.org/10.3390/photonics10050586