Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics
Abstract
:1. Introduction
2. Sample Preparation and Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ueda, J.; Tanabe, S. Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure. Opt. Mater. 2019, 10, 100018. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Payne, S.A.; Asztalos, S.J.; Hull, G.; Kuntz, J.D.; Niedermayr, T.; Pimputkar, S.; Roberts, J.J.; Sanner, R.D.; Tillotson, T.M.; et al. Scintillators with potential to supersede lanthanum bromide. IEEE Trans. Nucl. Sci. 2009, 56, 873–880. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A. Transparent ceramic scintillator fabrication, properties, and applications. In Proceedings of the Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, SPIE, San Diego, CA, USA, 4 September 2008; p. 70790X. [Google Scholar] [CrossRef]
- Yadav, S.K.; Uberuaga, B.P.; Nikl, M.; Jiang, C.; Stanek, C.R. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles. Phys. Rev. Appl. 2015, 4, 054012. [Google Scholar] [CrossRef]
- Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems; Springer: Berlin, Germany, 2017. [Google Scholar]
- Sidletskiy, O. Trends in search for bright mixed scintillators. Phys. Status Solidi (a) 2018, 215, 1701034. [Google Scholar] [CrossRef]
- Sidletskiy, O.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Witkiwicz-Łukaszek, S.; Mares, J.A.; Kucerkova, R.; Nikl, M.; Gerasymov, I.; Kurtsev, D.; et al. Composition Engineering of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce Film/Gd3(Al,Ga)5O12:Ce Substrate Scintillators. Crystals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Corey, Z.J.; Lu, P.; Zhang, G.; Sharma, Y.; Rutherford, B.X.; Dhole, S.; Roy, P.; Wang, Z.; Wu, Y.; Wang, H.; et al. Structural and Optical Properties of High Entropy (La,Lu,Y,Gd,Ce)AlO3 Perovskite Thin Films. Adv. Sci. 2022, 9, 2202671. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y. High-entropy transparent ceramics: Review of potential candidates and recently studied cases. Int. J. Appl. Ceram. Technol. 2022, 19, 644–672. [Google Scholar] [CrossRef]
- Talochka, Y.; Vasil’Ev, A.; Korzhik, M.; Tamulaitis, G. Impact of compositional disorder on electron migration in lutetium–yttrium oxyorthosilicate scintillator. J. Appl. Phys. 2022, 132, 053101. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Meng, Q.; Li, J.G.; Zhu, Q.; Li, X.; Sun, X. The effects of Mg2+/Si4+ substitution on crystal structure, local coordination and photoluminescence of (Gd,Lu)3Al5O12:Ce garnet phosphor. J. Alloys Compd. 2019, 797, 477–485. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 2018, 8, 12009. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, K.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ukhtary, M.S.; Saito, R. Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys. Rev. Res. 2020, 2, 033340. [Google Scholar] [CrossRef]
- Seeley, Z.; Cherepy, N.; Payne, S. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth 2013, 379, 79–83. [Google Scholar] [CrossRef]
- Su, J.; Zhang, Q.; Shao, S.; Gu, C.; Wan, S.; Yin, S. Preparation and Characterization of Y3Sc2Ga3O12 Nano-Polycrystalline Powders by Co-Precipitation Method. J. Rare Earths 2007, 25, 302–305. [Google Scholar]
- Luo, Z.; Lu, M.; Bao, J.; Liu, W.; Gao, C. Co-precipitation synthesis of gadolinium gallium garnet powders using ammonium hydrogen carbonate as the precipitant. Mater. Lett. 2005, 59, 1188–1191. [Google Scholar] [CrossRef]
- Pradhan, A.; Zhang, K.; Loutts, G. Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics. Mater. Res. Bull. 2004, 39, 1291–1298. [Google Scholar] [CrossRef]
- Li, H.-L.; Liu, X.-J.; Zeng, Y.; Huang, L.-P. Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes. J. Am. Ceram. Soc. 2006, 89, 2356–2358. [Google Scholar] [CrossRef]
- Li, H.-L.; Liu, X.-J.; Xie, R.-J.; Zhou, G.-H.; Hirosaki, N.; Pu, X.-P.; Huang, L.-P. Cerium-doped lutetium aluminum garnet phosphors and optically transparent ceramics prepared from powder precursors by a urea homogeneous precipitation method. Jpn. J. Appl. Phys. 2008, 47, 1657. [Google Scholar] [CrossRef]
- Korzhik, M.; Alenkov, V.; Buzanov, O.; Fedorov, A.; Dosovitskiy, G.; Grigorjeva, L.; Mechinsky, V.; Sokolov, P.; Tratsiak, Y.; Zolotarjovs, A.; et al. Nanoengineered Gd3Al2Ga3O12 scintillation materials with disordered garnet structure for novel detectors of ionizing radiation. Cryst. Res. Technol. 2019, 54, 1800172. [Google Scholar] [CrossRef]
- Korjik, M.; Bondarau, A.; Dosovitskiy, G.; Dubov, V.; Gordienko, K.; Karpuk, P.; Komendo, I.; Kuznetsova, D.; Mechinsky, V.; Pustovarov, V.; et al. Lanthanoid-doped quaternary garnets as phosphors for high brightness cathodoluminescence-based light sources. Heliyon 2022, 8, e10193. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Sun, Y.; Chen, X.; Zhang, Y.; Luo, Z.; Jiang, J.; Jiang, H. The effects of cation concentration in the salt solution on the cerium doped gadolinium gallium aluminum oxide nanopowders prepared by a co-precipitation method. IEEE Trans. Nucl. Sci. 2014, 61, 301–305. [Google Scholar] [CrossRef]
- Retivov, V.; Dubov, V.; Kuznetsova, D.; Ismagulov, A.; Korzhik, M. Gd3+ content optimization for mastering high light yield and fast GdxAl2Ga3O12:Ce3+ scintillation ceramics. J. Rare Earths 2022, in press.
- Korzhik, M.; Alenkov, V.; Buzanov, O.; Dosovitskiy, G.; Fedorov, A.; Kozlov, D.; Mechinsky, V.; Nargelas, S.; Tamulaitisd, G.; Vaitkevičiusd, A. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3O12:Ce,Mg. CrystEngComm 2020, 22, 2502–2506. [Google Scholar] [CrossRef]
- Kuznetsova, D.; Dubov, V.; Bondarev, A.; Dosovitskiy, G.; Mechinsky, V.; Retivov, V.; Kucherov, O.; Saifutyarov, R.; Korzhik, M. Tailoring of the Gd–Y–Lu ratio in quintuple (Gd,Lu,Y)3Al2Ga3O12:Ce ceramics for better scintillation properties. J. Appl. Phys. 2022, 132, 203104. [Google Scholar] [CrossRef]
- Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Korjik, M.; Sandu, R. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield. Opt. Mater. 2018, 78, 312–318. [Google Scholar] [CrossRef]
- Miola, M.; Ferraris, S.; Pirani, F.; Multari, C.; Bertone, E.; Rožman, K.; Kostevšek, N.; Verné, E. Reductant-free synthesis of magnetoplasmonic iron oxide-gold nanoparticles. Ceram. Int. 2017, 43, 15258–15265. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Pánek, D.; Brůža, P.; Chewpraditkul, W.; Wanarak, C.; Pattanaboonmee, N.; Babin, V.; Bartosiewicz, K.; Kamada, K.; Yoshikawa, A.; et al. Luminescence properties and scintillation response in Ce3+-doped Y2Gd1Al5−xGaxO12 (x = 2, 3, 4) single crystals. J. Appl. Phys. 2014, 116, 083505. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Brůža, P.; Pánek, D.; Pattanaboonmee, N.; Wantong, K.; Chewpraditkul, W.; Babin, V.; Bartosiewicz, K.; Kamada, K.; Yoshikawa, A.; et al. Optical and scintillation properties of Ce3+-doped YGd2Al5−xGaxO12 (x = 2, 3, 4) single crystal scintillators. J. Lumin. 2016, 169, 43–50. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Pattanaboonmee, N.; Chewpraditkul, W.; Sakthong, O.; Yamaji, A.; Kamada, K.; Kurosawa, S.; Yoshikawa, A.; Drozdowski, W.; Witkowski, M.E.; et al. Scintillation Characteristics of Mg²⁺-Codoped Y0.8Gd2.2(Al₅−xGax)O12:Ce Single Crystals. IEEE Trans. Nucl. Sci. 2020, 67, 910–914. [Google Scholar] [CrossRef]
- Chen, X.; Qin, H.; Zhang, Y.; Jiang, J.; Wu, Y.; Jiang, H. Effects of Ga substitution for Al on the fabrication and optical properties of transparent Ce:GAGG-based ceramics. J. Eur. Ceram. Soc. 2017, 37, 4109–4114. [Google Scholar] [CrossRef]
Sample Composition | Abbreviation | Median Particle Size d50, μm | Calculated Density, g/cm3 |
---|---|---|---|
Serie 1 | |||
Gd2.985Ce0.015Al2Ga3O12 | GAGG:Ce Ref1 * | 2 | 6.660 |
Gd1.4925Y1.4925Ce0.015Al2Ga3O12:Ce | GYAGG:Ce Ref2 * | 2 | 5.978 |
Gd2.239Y0.746Ce0.015Al2Ga3O12:Ce | GYAGG:Ce Ref3 | 2 | 6.294 |
GAGG:Ce/GYAGG:Ce (1/1) | G+GY (8 μm) | 8 | 6.289 |
GAGG:Ce/GYAGG:Ce (1/1) | G+GY (4 μm) | 4 | 6.294 |
GAGG:Ce/GYAGG:Ce (1/1) | G+GY (2 μm) | 2 | 6.295 |
Serie 2 | |||
Y2.985Ce0.015Al5O12 | YAG:Ce Ref4 | 2 | 4.552 |
Gd1.4925Y1.4925Ce0.015Al3.5Ga1.5O12 | GYAGG Ref5 * | 2 | 5.646 |
GAGG/YAG (1/1) | G+Y (6 μm) | 6 | 5.653 |
GAGG/YAG (1/1) | G+Y (4 μm) | 4 | 5.655 |
GAGG/YAG (1/1) | G+Y (2 μm) | 2 | 5.654 |
Serie 3 | |||
Y2.985Ce0.015Al2Ga3O12 | YAGG Ref6 * | 2 | 5.323 |
Y2.985Ce0.015Al3.5Ga1.5O12 | YAGG Ref7 * | 2 | 4.954 |
YAGG/YAG (1/1) | YG+Y (6 μm) | 6 | 4.950 |
YAGG/YAG (1/1) | YG+Y (3 μm) | 3 | 4.953 |
YAGG/YAG (1/1) | YG+Y (2 μm) | 2 | 4.952 |
Sample | Relative LY, rel. un. | Parameters of the Scintillation Kinetics, ns (%) |
---|---|---|
YAG:Ce single crystal with grinded surfaces | 1 | |
Series 1 | ||
GAGG:Ce Ref1 | 1.2 | 19 (16); 62 (63); 174 (21) |
GYAGG:Ce Ref2 | 2 | 27 (44); 64 (42); 490 (14) |
GYAGG:Ce Ref3 | 1.75 | 31 (46); 76 (39); 230 (15) |
G+GY (8 μm) | 1.68 | 27 (37); 69(48); 249(15) |
G+GY (4 μm) | 1.71 | 33 (52); 87 (38); 248 (10) |
G+GY (2 μm) | 2 | 26 (43); 74 (43); 263 (14) |
Series 2 | ||
YAG:Ce Ref4 | 1 | 44 (19); 78 (73); 830 (8) |
GYAGG Ref5 | 2 | 33 (22); 66 (42); 490 (35) |
G+Y (6 μm) | 2 | |
G+Y (4 μm) | 1.64 | |
G+Y (2 μm) | 1.5 | 46 (26); 83 (37); 607 (36) |
Series 3 | ||
YAGG Ref6 | 1.4 | |
YAGG Ref7 | 1.32 | |
YG+Y (6 μm) | 1.17 | |
YG+Y (3 μm) | 1.24 | |
YG+Y (2 μm) | 1.2 | 21 (21); 58 (72); 330 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyslova, V.; Kuznetsova, D.; Bondaray, A.; Karpyuk, P.; Korzhik, M.; Komendo, I.; Pustovarov, V.; Retivov, V.; Tavrunov, D. Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics. Photonics 2023, 10, 603. https://doi.org/10.3390/photonics10050603
Smyslova V, Kuznetsova D, Bondaray A, Karpyuk P, Korzhik M, Komendo I, Pustovarov V, Retivov V, Tavrunov D. Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics. Photonics. 2023; 10(5):603. https://doi.org/10.3390/photonics10050603
Chicago/Turabian StyleSmyslova, Valentina, Daria Kuznetsova, Alexey Bondaray, Petr Karpyuk, Mikhail Korzhik, Ilya Komendo, Vladimir Pustovarov, Vasilii Retivov, and Dmitry Tavrunov. 2023. "Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics" Photonics 10, no. 5: 603. https://doi.org/10.3390/photonics10050603
APA StyleSmyslova, V., Kuznetsova, D., Bondaray, A., Karpyuk, P., Korzhik, M., Komendo, I., Pustovarov, V., Retivov, V., & Tavrunov, D. (2023). Advances of the Cubic Symmetry Crystalline Systems to Create Complex, Bright Luminescent Ceramics. Photonics, 10(5), 603. https://doi.org/10.3390/photonics10050603