Seven-Grooved-Rod, Side-Pumping Concept for Highly Efficient TEM00-Mode Solar Laser Emission through Fresnel Lenses
Abstract
:1. Introduction
- Nd:YAG proved to be a great rod material for highly intense solar pumping due to its availability, reasonably low cost, good thermomechanical properties [13], and spectroscopic properties of the dopant [14]. Sensitizers of the Nd3+ ion emission, such as Cr3+ and Ce3+ ions, can also be added as co-dopants in the doped YAG host to increase the laser efficiency through the higher sunlight absorption and subsequent transfer of the excitation energy to the Nd3+ ions [15,16].
- Better heat dissipation and lessening of the thermal lens effect can be achieved through grooved rods, rather than the conventional rods with smooth sidewalls, since the area of contact between the laser medium and the cooling water is increased due to the shape of its sidewall, improving the laser efficiency and beam quality [17].
- Multi-rod solar laser systems can facilitate an equal distribution of the total amount of concentrated radiation among the several rods [18,19,20]. This way, substantial improvement of the thermal performance can be achieved, in comparison with the single, thicker rod systems. The coordination of multiple laser beams, with each one being optimized to perform a part of the overall procedure, has also produced results that were unobtainable with a single beam in various laser-based applications [21,22,23,24,25].
- Designing a solar laser system in side-pumping configuration can be constituted as a solution to provide alleviation of the thermal loading issue owed to the non-uniformity of the pump light distribution along the rod axis that is ubiquitous in the end-side-pumping approach, despite the latter being the configuration that has also led to record-breaking efficiencies [15,20,26,27,28,29,30,31,32]. Furthermore, the free access to both rod ends enables the optimization of more laser resonator parameters, permitting an efficient extraction of laser at low-order modes with improved beam quality [33,34,35,36,37]. This is of great significance for many laser-based applications in which the operation in TEM00-mode is desired due to the low divergence of the laser beam, allowing for a small, focused spot [38]. Damage in the resonator optics could also be prevented as a result of its smooth profile, avoiding the appearance of hot sites inside the laser medium [39].
2. Description of the Seven-Rod TEM00-Mode Solar Laser Concept
3. Numerical Modeling
3.1. Modeling of the Design Parameters of the TEM00-Mode Solar Laser System through Zemax®
3.2. Modeling of the Laser Resonator Parameters through LASCAD™ for TEM00-Mode Laser Beam Extraction
4. Numerical Analysis of the Seven-Rod TEM00-Mode Solar Laser System
4.1. Laser Power Analysis
4.2. Thermal Analysis
5. Discussion
- A single-rod scheme, in which four Fresnel lenses with 4 m2 total collection area, with the help of folding mirrors, collected and concentrated the solar rays towards a laser head composed of four fused silica aspheric lenses with long rectangular light guides for solar flux homogenization, four hollow rectangular CPCs, and four V-shaped pump cavities, where a 3 mm diameter and 76 mm length conventional Nd:YAG rod was mounted [50].
- A seven-rod scheme, where a single 4 m2 collection area Fresnel lens collected and concentrated the solar rays, being then received by a laser head comprised of a fused silica aspheric lens, a conical pump cavity, and seven 2.5 mm diameter and 15 mm length conventional Nd:YAG rods [51].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA Renewable Power’s Growth Is Being Turbocharged as Countries Seek to Strengthen Energy Security. Available online: https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security (accessed on 2 February 2023).
- McKinsey Renewable-Energy Development in a Net-Zero World. Available online: https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/renewable-energy-development-in-a-net-zero-world (accessed on 2 February 2023).
- Kiss, Z.J.; Lewis, H.R.; Duncan, R.C., Jr. Sun Pumped Continuous Optical Maser. Appl. Phys. Lett. 1963, 2, 93–94. [Google Scholar] [CrossRef]
- Young, C.G. A Sun-Pumped Cw One-Watt Laser. Appl. Opt. 1966, 5, 993. [Google Scholar] [CrossRef]
- Yabe, T.; Bagheri, B.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Funatsu, T.; Oishi, T.; Daito, K.; Ishioka, M.; Yasunaga, N.; et al. 100 W-Class Solar Pumped Laser for Sustainable Magnesium-Hydrogen Energy Cycle. J. Appl. Phys. 2008, 104, 083104. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.M.; Yang, S.H.; Wang, Y.; Ke, J.Y.; Zhang, H.Y. Demonstration of a Free-Space Optical Communication System Using a Solar-Pumped Laser as Signal Transmitter. Laser Phys. Lett. 2017, 14, 055804. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.A.; Shimony, Y.; Kalisky, Y.Y.; Noter, Y.; Yogev, A.; Rotman, S.R.; Rosenwaks, S. Solar-Pumped Solid State Laser Program. In Proceedings of the 10th Meeting on Optical Engineering in Israel, Jerusalem, Israel, 22 September 1997; Shladov, I., Rotman, S.R., Eds.; SPIE: Bellingham, WA, USA; Volume 3110, p. 196. [Google Scholar]
- Hemmati, H.; Biswas, A.; Djordjevic, I.B. Deep-Space Optical Communications: Future Perspectives and Applications. In Proceedings of the IEEE; IEEE: Piscataway, NJ, USA, 2011; Volume 99, pp. 2020–2039. [Google Scholar]
- Rather, J.D.G.; Gerry, E.T.; Zeiders, G.W. Investigation of Possibilities for Solar Powered High Energy Lasers in Space. NASA Tech. Rep. Serv. 1977. Available online: https://ntrs.nasa.gov/citations/19820010707 (accessed on 2 February 2023).
- Vasile, M.; Maddock, C.A. Design of a Formation of Solar Pumped Lasers for Asteroid Deflection. Adv. Space Res. 2012, 50, 891–905. [Google Scholar] [CrossRef]
- Masuda, T.; Iyoda, M.; Yasumatsu, Y.; Dottermusch, S.; Howard, I.A.; Richards, B.S.; Bisson, J.-F.; Endo, M. A Fully Planar Solar Pumped Laser Based on a Luminescent Solar Collector. Commun. Phys. 2020, 3, 60. [Google Scholar] [CrossRef]
- Hwang, I.H.; Lee, J.H. Efficiency and Threshold Pump Intensity of CW Solar-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1991, 27, 2129–2134. [Google Scholar] [CrossRef]
- Weksler, M.; Shwartz, J. Solar-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Lupei, V.; Lupei, A.; Gheorghe, C.; Ikesue, A. Emission Sensitization Processes Involving Nd3+ in YAG. J. Lumin. 2016, 170, 594–601. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Tibúrcio, B.D.; Almeida, J. Solar-Pumped Cr:Nd:YAG Ceramic Laser with 6.7% Slope Efficiency. Sol. Energy Mater. Sol. Cells 2018, 185, 75–79. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Garcia, D.; Catela, M.; Costa, H.; Guillot, E. Ce:Nd:YAG Side-Pumped Solar Laser. J. Photonics Energy 2021, 11, 018001. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Yang, S.; Wang, Y.; Ke, J.; Gao, F.; Zhang, H. Low Threshold and High Efficiency Solar-Pumped Laser with Fresnel Lens and a Grooved Nd:YAG Rod. In Proceedings of the High-Power Lasers and Applications VIII, Beijing, China, 9 November 2016; Li, R., Singh, U.N., Walter, R.F., Eds.; SPIE: Bellingham, WA, USA; Volume 10016, p. 1001609. [Google Scholar]
- Liang, D.; Almeida, J.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Simultaneous Solar Laser Emissions from Three Nd:YAG Rods within a Single Pump Cavity. Sol. Energy 2020, 199, 192–197. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Catela, M.; Costa, H.; Vistas, C.R. Tracking Error Compensation Capacity Measurement of a Dual-Rod Side-Pumping Solar Laser. Renew. Energy 2022, 195, 1253–1261. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Garcia, D.; Tibúrcio, B.D.; Catela, M.; Costa, H.; Guillot, E.; Almeida, J. Most Efficient Simultaneous Solar Laser Emissions from Three Ce:Nd:YAG Rods within a Single Pump Cavity. Sol. Energy Mater. Sol. Cells 2022, 246, 111921. [Google Scholar] [CrossRef]
- Olsen, F.O.; Hansen, K.S.; Nielsen, J.S. Multibeam Fiber Laser Cutting. J. Laser Appl. 2009, 21, 133–138. [Google Scholar] [CrossRef]
- Eifel, S.; Holtkamp, J. Multi-Beam Technology Boosts Cost Efficiency. Available online: https://www.laserfocusworld.com/industrial-laser-solutions/article/14216434/multibeam-technology-boosts-cost-efficiency (accessed on 10 February 2023).
- Strite, T.; Gusenko, A.; Grupp, M.; Hoult, T. Multiple Laser Beam Material Processing. Biul. Inst. Spaw. 2016, 60, 30–33. [Google Scholar] [CrossRef]
- Gillner, A.; Finger, J.; Gretzki, P.; Niessen, M.; Bartels, T.; Reininghaus, M. High Power Laser Processing with Ultrafast and Multi-Parallel Beams. J. Laser Micro Nanoeng. 2019, 14, 129–137. [Google Scholar] [CrossRef]
- Thibault, F. Multibeam Laser Marking: The Individual Traceability Enabler. Available online: https://www.laserfocusworld.com/laser-processing/article/14270572/laser-marking-the-individual-traceability-enabler (accessed on 10 February 2023).
- Yabe, T.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Nakatsuka, M.; Funatsu, T.; Mabuti, A.; Oyama, A.; Nakagawa, K.; Oishi, T.; et al. High-Efficiency and Economical Solar-Energy-Pumped Laser with Fresnel Lens and Chromium Codoped Laser Medium. Appl. Phys. Lett. 2007, 90, 261120. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J. Highly Efficient Solar-Pumped Nd:YAG Laser. Opt. Express 2011, 19, 26399. [Google Scholar] [CrossRef]
- Dinh, T.H.; Ohkubo, T.; Yabe, T.; Kuboyama, H. 120 Watt Continuous Wave Solar-Pumped Laser with a Liquid Light-Guide Lens and an Nd:YAG Rod. Opt. Lett. 2012, 37, 2670. [Google Scholar] [CrossRef]
- Xu, P.; Yang, S.; Zhao, C.; Guan, Z.; Wang, H.; Zhang, Y.; Zhang, H.; He, T. High-Efficiency Solar-Pumped Laser with a Grooved Nd:YAG Rod. Appl. Opt. 2014, 53, 3941. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Almeida, J.; Vistas, C.R.; Guillot, E. Solar-Pumped Nd:YAG Laser with 31.5 W/m2 Multimode and 7.9 W/m2 TEM00-Mode Collection Efficiencies. Sol. Energy Mater. Sol. Cells 2017, 159, 435–439. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Li, J.; He, D.; Zhang, H. 32.1 W/m2 Continuous Wave Solar-Pumped Laser with a Bonding Nd:YAG/YAG Rod and a Fresnel Lens. Opt. Laser Technol. 2018, 107, 158–161. [Google Scholar] [CrossRef]
- Garcia, D.; Liang, D.; Vistas, C.R.; Costa, H.; Catela, M.; Tibúrcio, B.D.; Almeida, J. Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency. Energies 2022, 15, 5292. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.; Linyekin, B.; Dobrusin, V. A Solar-Pumped Nd:YAG Laser in the High Collection Efficiency Regime. Opt. Commun. 2003, 222, 371–381. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R.; Guillot, E. Solar-Pumped TEM00 Mode Nd:YAG Laser by a Heliostat-Parabolic Mirror System. Sol. Energy Mater. Sol. Cells 2015, 134, 305–308. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Vistas, C.R.; Bouadjemine, R.; Guillot, E. 5.5 W Continuous-Wave TEM00-Mode Nd:YAG Solar Laser by a Light-Guide/2V-Shaped Pump Cavity. Appl. Phys. B 2015, 121, 473–482. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J.; Guillot, E. TEM00 Mode Nd:YAG Solar Laser by Side-Pumping a Grooved Rod. Opt. Commun. 2016, 366, 50–56. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R.; Oliveira, M.; Gonçalves, F.; Guillot, E. High-Efficiency Solar-Pumped TEM00-Mode Nd:YAG Laser. Sol. Energy Mater. Sol. Cells 2016, 145, 397–402. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and Annular Beams for Materials Processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineering, 5th ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1, ISBN 978-3-662-14221-9. [Google Scholar]
- Liang, D.; Almeida, J. Solar-Pumped TEM00 Mode Nd:YAG Laser. Opt. Express 2013, 21, 25107. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhao, C.; Zhao, Z.; Zhang, J.; Zhang, Z.; Zhang, H. Efficient 38.8 W/m2 Solar Pumped Laser with a Ce:Nd:YAG Crystal and a Fresnel Lens. Opt. Express 2023, 31, 1340. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated Solar Energy Applications Using Fresnel Lenses: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Bernardes, P.H.; Liang, D. Solid-State Laser Pumping by Light Guides. Appl. Opt. 2006, 45, 3811. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J. Solar-Pumped TEM00 Mode Laser Simple Design with a Grooved Nd:YAG Rod. Sol. Energy 2015, 122, 1325–1333. [Google Scholar] [CrossRef]
- Zhao, B.; Changming, Z.; He, J.; Yang, S. The Study of Active Medium for Solar-Pumped Solid-State Lasers. Acta Opt. Sin. 2007, 27, 1797–1801. [Google Scholar]
- ASTM G173-03(2012); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2020.
- Prahl, S. Nd:YAG−Nd:Y3Al5O12. Available online: https://omlc.org/spectra/lasermedia/html/052.html (accessed on 14 March 2023).
- Dong, J.; Rapaport, A.; Bass, M.; Szipocs, F.; Ueda, K. Temperature-Dependent Stimulated Emission Cross Section and Concentration Quenching in Highly Doped Nd3+:YAG Crystals. Phys. Status Solidi 2005, 202, 2565–2573. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Vistas, C.R.; Guillot, E. Highly Efficient End-Side-Pumped Nd:YAG Solar Laser by a Heliostat–Parabolic Mirror System. Appl. Opt. 2015, 54, 1970. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R. Scalable Pumping Approach for Extracting the Maximum TEM00 Solar Laser Power. Appl. Opt. 2014, 53, 7129. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Almeida, J.; Tibúrcio, B.D.; Catela, M.; Garcia, D.; Costa, H.; Vistas, C.R. Seven-Rod Pumping Approach for the Most Efficient Production of TEM00 Mode Solar Laser Power by a Fresnel Lens. J. Sol. Energy Eng. 2021, 143, 061004. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Catela, M.; Costa, H.; Vistas, C.R. Enhancing TEM00-Mode Solar Laser with Beam Merging and Ring-Array Concentrator. J. Sol. Energy Eng. 2022, 144, 061005. [Google Scholar] [CrossRef]
Parameter | Liang et al. (2014) [50] | Liang et al. (2021) [51] | Present Work |
---|---|---|---|
Type of rod | Conventional | Conventional | Grooved |
Number of rods | 1 | 7 | 7 |
Configuration | Side-pumping | End-side-pumping | Side-pumping |
Number of Fresnel lenses | 4 | 1 | 6 |
Collection area (m2) | 4 | 4 | 10 |
Solar irradiance (W/m2) | 950 | 950 | 950 |
Total TEM00-mode laser power (W) | 59.10 | 54.64 (=7.85 + 6 × 7.80) | 153.29 (=27.11 + 6 × 21.03) |
Collection efficiency (W/m2) | 14.78 | 13.66 | 15.33 |
Conversion efficiency (%) | 1.56 | 1.44 | 1.61 |
1.08, 1.43 | 1 × (1.36, 1.00) 6 × (1.00, 1.04) | 1 × (2.25, 1.00) 6 × (1.09, 1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, H.; Liang, D.; Almeida, J.; Catela, M.; Garcia, D.; Tibúrcio, B.D.; Vistas, C.R. Seven-Grooved-Rod, Side-Pumping Concept for Highly Efficient TEM00-Mode Solar Laser Emission through Fresnel Lenses. Photonics 2023, 10, 620. https://doi.org/10.3390/photonics10060620
Costa H, Liang D, Almeida J, Catela M, Garcia D, Tibúrcio BD, Vistas CR. Seven-Grooved-Rod, Side-Pumping Concept for Highly Efficient TEM00-Mode Solar Laser Emission through Fresnel Lenses. Photonics. 2023; 10(6):620. https://doi.org/10.3390/photonics10060620
Chicago/Turabian StyleCosta, Hugo, Dawei Liang, Joana Almeida, Miguel Catela, Dário Garcia, Bruno D. Tibúrcio, and Cláudia R. Vistas. 2023. "Seven-Grooved-Rod, Side-Pumping Concept for Highly Efficient TEM00-Mode Solar Laser Emission through Fresnel Lenses" Photonics 10, no. 6: 620. https://doi.org/10.3390/photonics10060620
APA StyleCosta, H., Liang, D., Almeida, J., Catela, M., Garcia, D., Tibúrcio, B. D., & Vistas, C. R. (2023). Seven-Grooved-Rod, Side-Pumping Concept for Highly Efficient TEM00-Mode Solar Laser Emission through Fresnel Lenses. Photonics, 10(6), 620. https://doi.org/10.3390/photonics10060620