New Biocompatible Technique Based on the Use of a Laser to Control the Whitefly Bemisia tabaci
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Colonies
2.2. Laser Sources and Physical Parameters
2.3. Laser Wavelength Screening
2.4. Effect of Laser Application on Plant Development
2.5. Automated Homemade System for Reliable Time Exposure Laser Irradiation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Barro, P.J.; Liu, S.-S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A Statement of Species Status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Brigide, P.; Ataide, T.D.R.; Canniatti-Brazaca, S.G.; Baptista, A.S.; Abdalla, A.L.; Filho, V.F.N.; Piedade, S.M.S.; Bueno, N.B.; Sant’ana, A.E.G. Iron Bioavailability of Common Beans (Phaseolus vulgaris L.) Intrinsically Labeled with 59Fe. J. Trace Elem. Med. Biol. 2014, 28, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.M.; Melo, P.G.S.; Faria, L.C.; Souza, T.L.P.O.; Melo, L.C.; Pereira, H.S. Genetic Parameters and Breeding Strategies for High Levels of Iron and Zinc in Phaseolus vulgaris L. Genet. Mol. Res. 2016, 15, 28011. [Google Scholar] [CrossRef] [PubMed]
- Nasar, S.; Shaheen, H.; Murtaza, G.; Tinghong, T.; Arfan, M.; Idrees, M. Socioeconomic Evaluation of Common Bean (Phaseolus vulgaris L.) Cultivation in Providing Sustainable Livelihood to the Mountain Populations of Kashmir Himalayas. Plants 2023, 12, 213. [Google Scholar] [CrossRef]
- Souza, T.L.P.O.; Faria, J.C.; Aragao, F.J.L.; Del Peloso, M.J.; Faria, L.C.; Aguiar, M.S.; Wendland, A.; Quintela, E.D.; Diaz, J.L.C.; Magaldi, M.; et al. BRS FC401 RMD: Cultivar de Feijão Carioca Geneticamente Modificada Com Resistência Ao Mosaico-Dourado. ISSN 1678-961X. 2016. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1055465 (accessed on 2 April 2023).
- Lal, R. Carbon Emission from Farm Operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Dusenbury, M.P.; Engel, R.E.; Miller, P.R.; Lemke, R.L.; Wallander, R. Nitrous Oxide Emissions from a Northern Great Plains Soil as Influenced by Nitrogen Management and Cropping Systems. J. Environ. Qual. 2008, 37, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for Reducing the Carbon Footprint of Field Crops for Semiarid Areas. A Review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y. Farming Tactics to Reduce the Carbon Footprint of Crop Cultivation in Semiarid Areas. A Review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon Footprint of Grain Production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef]
- Jaiswal, B.; Agrawal, M. Carbon Footprints of Agriculture Sector. In Carbon Footprints: Case Studies from the Building, Household, and Agricultural Sectors; Muthu, S.S., Ed.; Environmental Footprints and Eco-design of Products and Processes; Springer: Singapore, 2020; pp. 81–99. ISBN 9789811379161. [Google Scholar]
- Rashid, S.N. Effect Of Nd:YAG Laser On Flour Beetle. Tikrit J. Pure Sci. 2018, 23, 83–89. [Google Scholar] [CrossRef]
- Ubaid, J.M. Using Laser Energy for Controlling Some Stored Product Insects. Al-Kufa Univ. J. Biol. 2016, 2016, 37–41. [Google Scholar]
- Rashid, S.N.; Mahdi, E.M.; Jasim, A.S. Effect of Diode Laser on Ants (Camponotus Consobrinus). Mater. Today Proc. 2021, 42, 1980–1985. [Google Scholar] [CrossRef]
- Abdel-Kader, M.H.; El-Nozahy, A.M.; Ahmed, S.M.S.; Khalifa, I.A. Biochemical Studies of the Effect of Two Laser Radiation Wavelengths on the Khapra Beetle Trogoderma Granarium Everts (Coleoptera: Dermestidae). AIP Conf. Proc. 2007, 888, 225. [Google Scholar] [CrossRef]
- Gaetani, R.; Lacotte, V.; Dufour, V.; Clavel, A.; Duport, G.; Gaget, K.; Calevro, F.; Da Silva, P.; Heddi, A.; Vincent, D.; et al. Sustainable Laser-Based Technology for Insect Pest Control. Sci. Rep. 2021, 11, 11068. [Google Scholar] [CrossRef]
- Hamzah, A.K.; Al-Hamzah, F.A. Effect of Laser Radiation on the Phenotypic Mutations of Drosophila Melanogaster (Diptera:Drosophilidae). J. Adv. Zool. 2022, 43, 104–110. [Google Scholar]
- Ibrahim, R.; Abomaaty, S.; Ammar, M. Effect of Non-Conventional Methods to Control Liriomyza Trifolii, Aphis Gossypii and Tetranychus Urticae. Egypt. J. Agric. Res. 2017, 95, 1359–1368. [Google Scholar] [CrossRef]
- Ikeshoji, T. Mortality, Inherited Sterility and Phototactic Responses of Mosquitoes (Diptera:Culicidae) to Laser Beams of Different Spectra. Appl. Entomol. Zool. 1992, 27, 277–284. [Google Scholar] [CrossRef]
- Marx, C.; Kiesow, T.; Hustedt, M.; Kaierle, S.; Poehling, H.; Rath, T. Application of NIR-Lasers for the Control of Aphids and Whiteflies. In Proceedings of the DGG-Proceedings, Bonn, Germany, 29 April–3 May December 2013. [Google Scholar]
- Mullen, E.R.; Rutschman, P.; Pegram, N.; Patt, J.M.; Adamczyk, J.J. Johanson, 3ric Laser System for Identification, Tracking, and Control of Flying Insects. Opt. Express OE 2016, 24, 11828–11838. [Google Scholar] [CrossRef]
- Turner, W.K.; Callahan, P.S.; Lee, F.L. Lack of Response of Cabbage Looper, Corn Earworm and Fall Armyworm Moths1 to 28, 118 and 337 Μm Laser Radiation. Ann. Entomol. Soc. Am. 1977, 70, 234–236. [Google Scholar] [CrossRef]
- Ferreira, A.L.; FARIA, J.; Moura, M.C.; Zaidem, A.L.M.; Pizetta, C.S.R.; Freitas, E.; Coelho, G.R.; Silva, J.F.A.; Barrigossi, J.A.F.; Hoffmann, L.V.; et al. Whitefly-Tolerant Transgenic Common Bean (Phaseolus vulgaris) Line. Front. Plant Sci. 2022, 13, 984804. [Google Scholar] [CrossRef]
- Pizetta, C.S.R.; Ribeiro, W.R.; Ferreira, A.L.; da Costa Moura, M.; Bonfim, K.; Pinheiro, P.V.; Cabral, G.B.; Aragão, F.J.L. RNA Interference-Mediated Tolerance to Whitefly (Bemisia tabaci) in Genetically Engineered Tomato. Plant Cell Tiss. Organ. Cult. 2021, 148, 281–291. [Google Scholar] [CrossRef]
- Laporta, P.; Brussard, M. Design Criteria for Mode Size Optimization in Diode-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1991, 27, 2319–2326. [Google Scholar] [CrossRef]
- Kogelnik, H.; Li, T. Laser Beams and Resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- d’Errico, F.; Abegāo, L.; Souza, S.O.; Chierici, A.; Lazzeri, L.; Puccini, M.; Vitolo, S.; Miyamoto, Y.; Nanto, H.; Yamamoto, T. Entrance Surface Dosimetry with Radiophotoluminescent Films. Radiat. Meas. 2020, 137, 106423. [Google Scholar] [CrossRef]
- Dáder, B.; Gwynn-Jones, D.; Moreno, A.; Winters, A.; Fereres, A. Impact of UV-A Radiation on the Performance of Aphids and Whiteflies and on the Leaf Chemistry of Their Host Plants. J. Photochem. Photobiol. Biol. 2014, 138, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Shibuya, K.; Sato, M.; Saito, Y. Lethal Effects of Short-Wavelength Visible Light on Insects. Sci. Rep. 2014, 4, 7383. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Häder, D.-P. UV-Induced DNA Damage and Repair: A Review. Photochem. Photobiol. Sci 2002, 1, 225–236. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Richa; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef]
- Vogel, A.; Venugopalan, V. Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef]
- Taha, S.; Mohamed, W.R.; Elhemely, M.A.; El-Gendy, A.O.; Mohamed, T. Tunable Femtosecond Laser Suppresses the Proliferation of Breast Cancer in Vitro. J. Photochem. Photobiol. Biol. 2023, 240, 112665. [Google Scholar] [CrossRef]
CW-DL Model | Beam Area [cm−2] | Avg. Optical Power [W] | Optical Intensity [W cm−2] |
---|---|---|---|
Inferno (640 nm) | 0.009 | 0.032 | 0.702 |
Krypton (527 nm) | 0.006 | 0.021 | 0.708 |
Artic (444 nm) | 0.006 | 0.024 | 0.704 |
DM-B5000 (454 nm) Spot 1 | 0.006 | 0.040 | 1.173 |
DM-B5000 (454 nm) Spot 2 | 0.011 | 0.040 | 0.706 |
DM-B5000 (454 nm) Spot 3 | 0.024 | 0.040 | 0.477 |
Continuous-Wave Diode Lasers | |||
---|---|---|---|
Artic 444 [nm] | Krypton 527 [nm] | Inferno 640 [nm] | |
Intensity [Wcm−2] | 6.0 | 6.0 | 6.0 |
Exposure time [s] | 1 | 60 | 60 |
Total number of insects evaluated | 24 | 24 | 24 |
Number of dead insects after laser irradiation | 24 | 24 | 1 |
Insect mortality (i) [%] | 100 | 100 | 4 |
Damage to plant development | NO | YES | YES |
CW-DL Artic (444 nm) and Krypton (527 nm) | |||
---|---|---|---|
444 [nm] | 527 [nm] | Control Experiment | |
No Irradiation | |||
Average number of pods per plant | 6.00 (a) | 5.00 (a) | 5.85 (a) |
Average number of grains per plant | 22.33 (a) | 18.75 (a) | 25.14 (a) |
Seed germination rate [%] | 97.60 (a) | 99.15 (a) | 96.90 (a) |
CW-DL Model DM-B5000 (454 nm) | |||
---|---|---|---|
Intensity [Wcm−2] | |||
Exposure time [s] | |||
Total number of insects evaluated | 56 | 51 | 52 |
Number of dead insects after laser irradiation | 56 | 51 | 52 |
Insect mortality (i) [%] | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaidem, A.; Silva, L.; Ferreira, A.; Carvalho, M.; Ragni, M.; Abegão, L.; Pinheiro, P. New Biocompatible Technique Based on the Use of a Laser to Control the Whitefly Bemisia tabaci. Photonics 2023, 10, 636. https://doi.org/10.3390/photonics10060636
Zaidem A, Silva L, Ferreira A, Carvalho M, Ragni M, Abegão L, Pinheiro P. New Biocompatible Technique Based on the Use of a Laser to Control the Whitefly Bemisia tabaci. Photonics. 2023; 10(6):636. https://doi.org/10.3390/photonics10060636
Chicago/Turabian StyleZaidem, Antonia, Lucas Silva, Amanda Ferreira, Matheus Carvalho, Mirco Ragni, Luis Abegão, and Patricia Pinheiro. 2023. "New Biocompatible Technique Based on the Use of a Laser to Control the Whitefly Bemisia tabaci" Photonics 10, no. 6: 636. https://doi.org/10.3390/photonics10060636
APA StyleZaidem, A., Silva, L., Ferreira, A., Carvalho, M., Ragni, M., Abegão, L., & Pinheiro, P. (2023). New Biocompatible Technique Based on the Use of a Laser to Control the Whitefly Bemisia tabaci. Photonics, 10(6), 636. https://doi.org/10.3390/photonics10060636