Performance Improvement of InGaN-Based Red Light-Emitting Diodes via Ultrathin InN Insertion Layer
Abstract
:1. Introduction
2. Device Structures and Simulation Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Chen, D.; Lu, H.; Tao, T.; Zhuang, Z.; Shao, Z.; Xu, W.; Ge, H.; Zhi, T.; Ren, F.; et al. Hybrid Light Emitters and UV Solar-Blind Avalanche Photodiodes based on III-Nitride Semiconductors. Adv. Mater. 2020, 32, 1904354. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Nong, M.; Lu, Y.; Cao, H.; Yuvaraja, S.; Xiao, N.; Alnakhli, Z.; Aguileta Vázquez, R.R.; Li, X. Effect of the AlN strain compensation layer on InGaN quantum well red-light-emitting diodes beyond epitaxy. Opt. Lett. 2022, 47, 6229–6232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhao, X.; Du, P.; Zhang, Z.; Liu, X.; Liu, S.; Guo, L.J. Application of patterned sapphire substrate for III-nitride light-emitting diodes. Nanoscale 2022, 14, 4887–4907. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, X.; Zhang, J.; Sun, Y.; Yang, H.; Guo, L.J.; Zhou, S. Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth. Laser Photonics Rev. 2023, 17, 2200455. [Google Scholar] [CrossRef]
- Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy 2020, 69, 104427. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Yan, H.; Chen, Z.; Liu, Y.; Liu, S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Express 2019, 27, A669–A692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, W.; Zhang, J.; Zhao, H.; Liu, Z.; Hu, Z. Influence of well position on the electroluminescence characteristics of InGaN/GaN single quantum well red light-emitting diodes. J. Lumin. 2022, 250, 119090. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Wong, M.S.; Chan, P.; Yang, Y.; Zhang, H.; Iza, M.; Speck, J.S.; Nakamura, S.; Denbaars, S.P. Progress of InGaN-Based Red Micro-Light Emitting Diodes. Crystals 2022, 12, 541. [Google Scholar] [CrossRef]
- Oh, J.T.; Lee, S.Y.; Moon, Y.T.; Moon, J.H.; Park, S.; Hong, K.Y.; Song, K.Y.; Oh, C.; Shim, J.I.; Jeong, H.H.; et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 2018, 26, 11194–11200. [Google Scholar] [CrossRef]
- Romanov, A.E.; Baker, T.J.; Nakamura, S.; Speck, J.S. Strain-induced polarization in wurtzite III-nitride semipolar layers. J. Appl. Phys. 2006, 100, 023522. [Google Scholar] [CrossRef] [Green Version]
- Pieniak, K.; Trzeciakowski, W.; Muzioł, G.; Kafar, A.; Siekacz, M.; Skierbiszewski, C.; Suski, T. Evolution of a dominant light emission mechanism induced by changes of the quantum well width in InGaN/GaN LEDs and LDs. Opt. Express 2021, 29, 40804–40818. [Google Scholar] [CrossRef]
- Muziol, G.; Hajdel, M.; Siekacz, M.; Turski, H.; Pieniak, K.; Bercha, A.; Trzeciakowski, W.; Kudrawiec, R.; Suski, T.; Skierbiszewski, C. III-nitride optoelectronic devices containing wide quantum wells-unexpectedly efficient light sources. Jpn. J. Appl. Phys. 2021, 61, SA0801. [Google Scholar] [CrossRef]
- Young, N.G.; Farrell, R.M.; Oh, S.; Cantore, M.; Wu, F.; Nakamura, S.; DenBaars, S.P.; Weisbuch, C.; Speck, J.S. Polarization field screening in thick (0001) InGaN/GaN single quantum well light-emitting diodes. Appl. Phys. Lett. 2016, 108, 061105. [Google Scholar] [CrossRef]
- Alhassan, A.I.; Young, N.G.; Farrell, R.M.; Pynn, C.; Wu, F.; Alyamani, A.Y.; Nakamura, S.; DenBaars, S.P.; Speck, J.S. Development of high performance green c-plane III-nitride light-emitting diodes. Opt. Express 2018, 26, 5591–5601. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Mueller, G.O.; Watanabe, S.; Gardner, N.F.; Munkholm, A.; Krames, M.R. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 2007, 91, 141101. [Google Scholar] [CrossRef]
- Zhang, B.J.; Egawa, T.; Ishikawa, H.; Nishikawa, N.; Jimbo, T.; Umeno, M. InGaN Multiple-Quantum-Well Light Emitting Diodes on Si(111) Substrates. Phys. Status Solidi (A) 2001, 188, 151–154. [Google Scholar] [CrossRef]
- Badcock, T.J.; Ali, M.; Zhu, T.; Pristovsek, M.; Oliver, R.A.; Shields, A.J. Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures. Appl. Phys. Lett. 2016, 109, 151110. [Google Scholar] [CrossRef]
- Wernicke, T.; Schade, L.; Netzel, C.; Rass, J.; Hoffmann, V.; Ploch, S.; Knauer, A.; Weyers, M.; Schwarz, U.; Kneissl, M. Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 2012, 27, 024014. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, G.; Liu, W.; Zhao, S.; Liu, Z.; Chen, Y.; Wang, J.; Li, J. Semipolar (101)InGaN/GaN red-amber-yellow light-emitting diodes on triangular-striped Si (100) substrate. J. Mater. Sci. 2019, 54, 7780–7788. [Google Scholar] [CrossRef]
- Du, P.; Shi, L.; Liu, S.; Zhou, S. High-performance AlGaN-based deep ultraviolet light-emitting diodes with different types of InAlGaN/AlGaN electron blocking layer. Jpn. J. Appl. Phys. 2021, 60, 092001. [Google Scholar] [CrossRef]
- Lang, J.; Xu, F.J.; Ge, W.K.; Liu, B.Y.; Zhang, N.; Sun, Y.H.; Wang, J.M.; Wang, M.X.; Xie, N.; Fang, X.Z.; et al. Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer. Opt. Express 2019, 27, A1458–A1466. [Google Scholar] [CrossRef] [PubMed]
- Arif, R.A.; Zhao, H.; Ee, Y.K.; Tansu, N. Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes. IEEE J. Quantum Electron. 2008, 44, 573–580. [Google Scholar] [CrossRef]
- Arif, R.A.; Ee, Y.-K.; Tansu, N. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. 2007, 91, 091110. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Zhao, X.; Sun, Y.; Tao, G.; Du, P.; Zhou, S. Unexpectedly Simultaneous Increase in Wavelength and Output Power of Yellow LEDs Based on Staggered Quantum Wells by TMIn Flux Modulation. Nanomaterials 2022, 12, 3378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tang, B.; Gong, L.; Bai, J.; Ping, J.; Zhou, S. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes. Appl. Phys. Lett. 2021, 118, 182102. [Google Scholar] [CrossRef]
- Melanson, B.; Liu, C.; Zhang, J. Analysis of InGaN-Delta-InN Quantum Wells on InGaN Substrates for Red Light Emitting Diodes and Lasers. IEEE Photonics J. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef]
- Usman, M.; Mushtaq, U.; Zheng, D.-G.; Han, D.-P.; Rafiq, M.; Muhammad, N. Enhanced Internal Quantum Efficiency of Bandgap-Engineered Green W-Shaped Quantum Well Light-Emitting Diode. Appl. Sci. 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Munsif, M.; Anwar, A.-R.; Mushtaq, U.; Imtiaz, W.A.; Han, D.-P.; Muhammad, N. Zigzag-shaped quantum well engineering of green light-emitting diode. Superlattices Microstruct. 2019, 132, 106164. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, Z.; Lei, Y.; Tang, B.; Tao, G.; Du, P.; Zhao, X. InGaN quantum well with gradually varying indium content for high-efficiency GaN-based green light-emitting diodes. Opt. Lett. 2022, 47, 1291–1294. [Google Scholar] [CrossRef]
- Ohashi, T.; Kouno, T.; Kawai, M.; Kikuchi, A.; Kishino, K. Growth and characterization of InGaN double heterostructures for optical devices at 1.5-1.7 mm communication wavelengths. Phys. Status Solidi (A) 2004, 201, 2850–2854. [Google Scholar] [CrossRef]
- Naoi, H.; Kurouchi, M.; Muto, D.; Takado, S.; Araki, T.; Miyajima, T.; Na, H.; Nanishi, A.Y. Growth and properties of InN, InGaN, and InN/InGaN quantum wells. Phys. Status Solidi (A) 2006, 203, 93–101. [Google Scholar] [CrossRef]
- Kurouchi, M.; Naoi, H.; Araki, T.; Miyajima, T.; Nanishi, Y. Fabrication and Characterization of InN-Based Quantum Well Structures Grown by Radio-Frequency Plasma-Assisted Molecular-Beam Epitaxy. Jpn. J. Appl. Phys. 2005, 44, L230. [Google Scholar] [CrossRef]
- Che, S.-B.; Mizuno, T.; Wang, X.; Ishitani, Y.; Yoshikawa, A. Fabrication and properties of coherent-structure In-polarity InN/In0.7Ga0.3N multiquantum wells emitting at around 1.55 μm. J. Appl. Phys. 2007, 102, 083539. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Che, S.B.; Yamaguchi, W.; Saito, H.; Wang, X.Q.; Ishitani, Y.; Hwang, E.S. Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix. Appl. Phys. Lett. 2007, 90, 073101. [Google Scholar] [CrossRef]
- Ozaki, T.; Funato, M.; Kawakami, Y. Red-emitting InxGa1-xN/InyGa1-yN quantum wells grown on lattice-matched InyGa1-yN/ScAlMgO4 (0001) templates. Appl. Phys. Express 2019, 12, 011007. [Google Scholar] [CrossRef]
- Du, P.; Shi, L.; Liu, S.; Zhou, S. Polarization-doped quantum wells with graded Al-composition for highly efficient deep ultraviolet light-emitting diodes. Micro Nanostruct. 2022, 163, 107150. [Google Scholar] [CrossRef]
- Che, S.; Yuki, A.; Watanabe, H.; Ishitani, Y.; Yoshikawa, A. Fabrication of Asymmetric GaN/InN/InGaN/GaN Quantum-Well Light Emitting Diodes for Reducing the Quantum-Confined Stark Effect in the Blue-Green Region. Appl. Phys. Express 2009, 2, 021001. [Google Scholar] [CrossRef]
- Mymrin, V.F.; Bulashevich, K.A.; Podolskaya, N.I.; Zhmakin, I.A.; Karpov, S.Y.; Makarov, Y.N. Modelling study of MQW LED operation. Phys. Status Solidi (C) 2005, 2, 2928–2931. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, T.G. Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths. Phys. Status Solidi (A) 2014, 211, 656–660. [Google Scholar] [CrossRef]
- Mondal, R.K.; Chatterjee, V.; Singh, S.; Islam, S.M.; Pal, S. Optimization of structure parameters for highly efficient AlGaN based deep ultraviolet light emitting diodes. Superlattices Microstruct. 2017, 112, 339–352. [Google Scholar] [CrossRef]
- Muziol, G.; Turski, H.; Siekacz, M.; Szkudlarek, K.; Janicki, L.; Baranowski, M.; Zolud, S.; Kudrawiec, R.; Suski, T.; Skierbiszewski, C. Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices. ACS Photonics 2019, 6, 1963–1971. [Google Scholar] [CrossRef]
Distance (nm) | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
Ee1 (eV) | −0.725 | −0.879 | −1.001 | −1.083 | −1.052 |
Ehh1 (eV) | −2.674 | −2.725 | −2.838 | −2.947 | −2.971 |
Ee1 − Ehh1 (eV) | 1.949 | 1.846 | 1.837 | 1.864 | 1.919 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Du, P.; Shi, L.; Sun, Y.; Zhou, S. Performance Improvement of InGaN-Based Red Light-Emitting Diodes via Ultrathin InN Insertion Layer. Photonics 2023, 10, 647. https://doi.org/10.3390/photonics10060647
Zhou Q, Du P, Shi L, Sun Y, Zhou S. Performance Improvement of InGaN-Based Red Light-Emitting Diodes via Ultrathin InN Insertion Layer. Photonics. 2023; 10(6):647. https://doi.org/10.3390/photonics10060647
Chicago/Turabian StyleZhou, Qianxi, Peng Du, Lang Shi, Yuechang Sun, and Shengjun Zhou. 2023. "Performance Improvement of InGaN-Based Red Light-Emitting Diodes via Ultrathin InN Insertion Layer" Photonics 10, no. 6: 647. https://doi.org/10.3390/photonics10060647
APA StyleZhou, Q., Du, P., Shi, L., Sun, Y., & Zhou, S. (2023). Performance Improvement of InGaN-Based Red Light-Emitting Diodes via Ultrathin InN Insertion Layer. Photonics, 10(6), 647. https://doi.org/10.3390/photonics10060647