Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems
Abstract
:1. Introduction
2. Luminescent Materials for VLC Systems
2.1. Metal Organic Frameworks (MOFs)
2.2. Organic Molecules–Organic-Light Emitting Diodes (OLEDs) in VLC
2.3. Polymers
2.4. Features of BODIPY Dyes
2.5. Halide Perovskite Nanocrystals
3. Applications of Luminescent Materials in VLC
4. Current Challenges of Using Luminescent Materials for Visible-Light Communication
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, L.U.; Yaqoob, I.; Imran, M.; Han, Z.; Hong, C.S. 6G Wireless Systems: A Vision, Architectural Elements, and Future Directions. IEEE Access 2020, 8, 147029–147044. [Google Scholar] [CrossRef]
- Eltokhy, M.A.R.; Abdel-Hady, M.; Haggag, A.; El-Bendary, M.A.M.; Ali, H.; Hosny, T. Audio SIMO system based on visible light communication using cavity LEDs. Multimed. Tools Appl. 2023, 1–15. [Google Scholar] [CrossRef]
- Zhang, R.; You, B.; Wang, S.; Han, K.; Shen, X.; Wang, W. Broadband and switchable terahertz polarization converter based on graphene metasurfaces. Opt. Express 2021, 29, 24804–24815. [Google Scholar] [CrossRef]
- Sajjad, M.T.; Manousiadis, P.P.; Orofino, C.; Cortizo-Lacalle, D.; Kanibolotsky, A.L.; Rajbhandari, S.; Amarasinghe, D.; Chun, H.; Faulkner, G.; O’Brien, D.C.; et al. Fluorescent Red-Emitting BODIPY Oligofluorene Star-Shaped Molecules as a Color Converter Material for Visible Light Communications. Adv. Opt. Mater. 2015, 3, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wei, Z.; Guan, X.; Zheng, Y.; Zhang, X.; Wang, J.; Wang, S.; Liu, N.; Xu, Y. High-speed real-time visible light communication system based on InGaN/GaN-base multi-quantum well blue micro-LED. Optoelectron. Lett. 2021, 17, 741–745. [Google Scholar] [CrossRef]
- Haggar, J.I.H.; Cai, Y.; Bai, J.; Ghataora, S.; Wang, T. Long-Wavelength Semipolar (11–22) InGaN/GaN LEDs with Multi-Gb/s Data Transmission Rates for VLC. ACS Appl. Electron. Mater. 2021, 3, 4236–4242. [Google Scholar] [CrossRef]
- Sajjad, M.T.; Manousiadis, P.P.; Chun, H.; Vithanage, D.A.; Rajbhandari, S.; Kanibolotsky, A.L.; Faulkner, G.; O’Brien, D.; Skabara, P.J.; Samuel, I.D.W.; et al. Novel Fast Color-Converter for Visible Light Communication Using a Blend of Conjugated Polymers. ACS Photonics 2015, 2, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Dursun, I.; Shen, C.; Parida, M.R.; Pan, J.; Sarmah, S.P.; Priante, D.; Alyami, N.; Liu, J.; Saidaminov, M.I.; Alias, M.S.; et al. Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics 2016, 3, 1150–1156. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wei, Z.; Cai, Y.; Wang, L.; Li, M.; Liu, P.; Xie, R.; Wang, L.; Wei, G.; Fu, H.Y. Encapsulation-Enabled Perovskite–PMMA Films Combining a Micro-LED for High-Speed White-Light Communication. ACS Appl. Mater. Interfaces 2021, 13, 54143–54151. [Google Scholar] [CrossRef]
- Kang, C.H.; Dursun, I.; Liu, G.; Sinatra, L.; Sun, X.; Kong, M.; Pan, J.; Maity, P.; Ooi, E.-N.; Ng, T.K.; et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- López-Fraguas, E.; Arredondo, B.; Vega-Colado, C.; Pozo, G.d.; Najafi, M.; Martín-Martín, D.; Galagan, Y.; Sánchez-Pena, J.M.; Vergaz, R.; Romero, B. Visible Light Communication system using an organic emitter and a perovskite photodetector. Org. Electron. 2019, 73, 292–298. [Google Scholar] [CrossRef]
- James Singh, K.; Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Huang Chen, S.-W.; Liou, F.-J.; Wu, T.; Lin, C.-C.; Chow, C.-W.; Lin, G.-R.; et al. Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [Google Scholar] [CrossRef]
- Mei, S.; Liu, X.; Zhang, W.; Liu, R.; Zheng, L.; Guo, R.; Tian, P. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 5641–5648. [Google Scholar] [CrossRef]
- Hu, P.; Liu, Y.; Sun, P.; Yao, Q.; Liu, Z.; Luo, Z.; Chao, K.; Jiang, H.; Jiang, J. Tunable YAG:Ce3+ ceramic phosphors for white laser-diode lighting in transmissive/reflective models. Mater. Res. Bull. 2021, 140, 111297. [Google Scholar] [CrossRef]
- Cantarano, A.; Ibanez, A.; Dantelle, G. Garnet-Type Nanophosphors for White LED Lighting. Front. Mater. 2020, 7, 210. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Kan, D.; Wu, T.; Song, Y.; Zheng, K.; Sheng, Y.; Shi, Z.; Zou, H. Crystal structure, luminescence properties and application performance of color tuning Y2Mg2Al2Si2O12:Ce3+,Mn2+ phosphors for warm white light-emitting diodes. Mater. Adv. 2020, 1, 2261–2270. [Google Scholar] [CrossRef]
- Hyunchae, C.; Manousiadis, P.; Rajbhandari, S.; Vithanage, D.A.; Faulkner, G.; Tsonev, D.; McKendry, J.J.D.; Videv, S.; Enyuan, X.; Erdan, G.; et al. Visible Light Communication Using a Blue GaN μLED and Fluorescent Polymer Color Converter. IEEE Photonics Technol. Lett. 2014, 26, 2035–2038. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, R.; Kang, Q.; Zhang, X.; Zhang, Z.-h. Recent Advances on GaN-Based Micro-LEDs. Micromachines 2023, 14, 991. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, Y.; He, R.; Chen, R.; Zhang, S.; Long, H.; Wang, J.; Wei, T. GaN-based parallel micro-light-emitting diode arrays with dual-wavelength InxGa1-xN/GaN MQWs for visible light communication. Opt. Express 2022, 30, 18461. [Google Scholar] [CrossRef]
- Kumar, V.; Kymissis, I. MicroLED/LED electro-optical integration techniques for non-display applications. Appl. Phys. Rev. 2023, 10, 021306. [Google Scholar] [CrossRef]
- Lu, T.; Lin, X.; Guo, W.; Tu, C.-C.; Liu, S.; Lin, C.-J.; Chen, Z.; Kuo, H.-C.; Wu, T. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron. Sci. 2022, 1, 220020. [Google Scholar] [CrossRef]
- Minotto, A.; Haigh, P.A.; Łukasiewicz, Ł.G.; Lunedei, E.; Gryko, D.T.; Darwazeh, I.; Cacialli, F. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci. Appl. 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manousiadis, P.P.; Yoshida, K.; Turnbull, G.A.; Samuel, I.D.W. Organic semiconductors for visible light communications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190186. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Peng, J.; Wang, W.; Liu, S.; Zhao, Q.; Huang, W. Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 2018, 377, 44–63. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Liu, X.; Zhang, Y.; Zhou, X.; Lu, Y. Metal-organic framework based OLED for visible light communication. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Chen, W.; Zhuang, Y.; Wang, L.; Lv, Y.; Liu, J.; Zhou, T.-L.; Xie, R.-J. Color-Tunable and High-Efficiency Dye-Encapsulated Metal–Organic Framework Composites Used for Smart White-Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 18910–18917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Lin, B.; Hu, X.; Wei, Y.; Zhang, C.; An, B.; Wang, C.; Lin, W. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal–Organic Framework for Fast White-Light Communication. ACS Appl. Mater. Interfaces 2017, 9, 35253–35259. [Google Scholar] [CrossRef]
- Pandey, P.; Thapa, K.; Ojha, G.P.; Seo, M.-K.; Shin, K.H.; Kim, S.-W.; Sohn, J.I. Metal-organic frameworks-based triboelectric nanogenerator powered visible light communication system for wireless human-machine interactions. Chem. Eng. J. 2023, 452, 139209. [Google Scholar] [CrossRef]
- Wang, J.-X.; Wang, Y.; Nadinov, I.; Yin, J.; Gutiérrez-Arzaluz, L.; Healing, G.; Alkhazragi, O.; Cheng, Y.; Jia, J.; Alsadun, N.; et al. Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. J. Am. Chem. Soc. 2022, 144, 6813–6820. [Google Scholar] [CrossRef]
- Lustig, W.P.; Shen, Z.; Teat, S.J.; Javed, N.; Velasco, E.; O’Carroll, D.M.; Li, J. Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chem. Sci. 2020, 11, 1814–1824. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ye, F.; Huang, Z.; Zhang, Y.; Zhou, X.; Lu, Y. Linearly polarized surface warm-yellow LED based on orientated organic dyes in rod-like metal-organic framework crystal arrays. Opt. Mater. Express 2018, 8, 2901–2909. [Google Scholar] [CrossRef]
- Yoshida, K.; Manousiadis, P.P.; Bian, R.; Chen, Z.; Murawski, C.; Gather, M.C.; Haas, H.; Turnbull, G.A.; Samuel, I.D.W. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 2020, 11, 1171. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.X.G.; Xie, E.; McKendry, J.J.D.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A.E.; Gu, E.; Penty, R.V.; et al. High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-C.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Lin, G.-R. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps. Sci. Rep. 2017, 7, 40480. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.-C.; Hsieh, D.-H.; Lin, C.-Y.; Chen, H.-Y.; Huang, C.-Y.; He, J.-H.; Ooi, B.; DenBaars, S.P.; Nakamura, S.; Kuo, H.-C.; et al. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication. Sci. Rep. 2015, 5, 18690. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Lin, Y.; Huang, Y.-M.; Liu, M.; Singh, K.J.; Lin, W.; Lu, T.; Zheng, X.; Zhou, J.; Kuo, H.-C.; et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res. 2021, 9, 2132. [Google Scholar] [CrossRef]
- Amjad, A.A.; Qasem, Z.; Li, Y.; Li, Q.; Fu, H. All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting: Publisher’s note. Opt. Express 2022, 30, 35112–35124. [Google Scholar] [CrossRef]
- Wu, T.-C.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Huang, Y.-F.; Lin, G.-R. Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-T.; Cheng, C.-H.; Kuo, H.-C.; Lin, G.-R. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron. 2019, 67, 100225. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z.; Gao, Q.; Li, S. A 51.6 Mb/s Experimental VLC System Using a Monochromic Organic LED. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Haigh, P.A.; Minotto, A.; Burton, A.; Ghassemlooy, Z.; Murto, P.; Genene, Z.; Mammo, W.; Andersson, M.R.; Wang, E.; Cacialli, F.; et al. Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED Based Visible Light Communications. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Le, S.T.; Kanesan, T.; Bausi, F.; Haigh, P.A.; Rajbhandari, S.; Ghassemlooy, Z.; Papakonstantinou, I.; Popoola, W.O.; Burton, A.; Le Minh, H.; et al. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing. Opt. Lett. 2014, 39, 3876. [Google Scholar] [CrossRef] [Green Version]
- De Souza, P.; Bamiedakis, N.; Yoshida, K.; Manousiadis, P.P.; Turnbull, G.A.; Samuel, I.D.W.; Penty, R.V.; White, I.H. High-Bandwidth Organic Light Emitting Diodes for Ultra-Low Cost Visible Light Communication Links. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Haigh, P.A.; Bausi, F.; Le Minh, H.; Papakonstantinou, I.; Popoola, W.O.; Burton, A.; Cacialli, F. Wavelength-Multiplexed Polymer LEDs: Towards 55 Mb/s Organic Visible Light Communications. IEEE J. Sel. Areas Commun. 2015, 33, 1819–1828. [Google Scholar] [CrossRef]
- Gelkop, B.; Aichnboim, L.; Malka, D. RGB wavelength multiplexer based on polycarbonate multicore polymer optical fiber. Opt. Fiber Technol. 2021, 61, 102441. [Google Scholar] [CrossRef]
- Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623. [Google Scholar] [CrossRef]
- Minotto, A.; Murto, P.; Genene, Z.; Zampetti, A.; Carnicella, G.; Mammo, W.; Andersson, M.R.; Wang, E.; Cacialli, F. Efficient Near-Infrared Electroluminescence at 840 nm with “Metal-Free” Small-Molecule:Polymer Blends. Adv. Mater. 2018, 30, 1706584. [Google Scholar] [CrossRef] [Green Version]
- Park, J. Speedup of Dynamic Response of Organic Light-Emitting Diodes. J. Light. Technol. 2010, 28, 2873–2880. [Google Scholar] [CrossRef]
- Haigh, P.A.; Bausi, F.; Ghassemlooy, Z.; Papakonstantinou, I.; Le Minh, H.; Fléchon, C.; Cacialli, F. Visible light communications: Real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Opt. Express 2014, 22, 2830. [Google Scholar] [CrossRef]
- Haigh, P.A.; Ghassemlooy, Z.; Le Minh, H.; Rajbhandari, S.; Arca, F.; Tedde, S.F.; Hayden, O.; Papakonstantinou, I. Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications. J. Light. Technol. 2012, 30, 3081–3088. [Google Scholar] [CrossRef]
- Chun, H.; Chiang, C.-J.; Monkman, A.; O’Brien, D. A Study of Illumination and Communication using Organic Light Emitting Diodes. J. Light. Technol. 2013, 31, 3511–3517. [Google Scholar] [CrossRef]
- Haigh, P.A.; Ghassemlooy, Z.; Zvánovec, S.; Komanec, M. VLC with Organic Photonic Components. In Visible Light Communications; Routledge Handbooks Online; CRC Press: Boca Raton, FL, USA, 2017; pp. 521–548. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Thejokalyani, N.; Dhoble, S.J. Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes—A review. Renew. Sustain. Energy Rev. 2014, 32, 448–467. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z. OLED Panel Radiation Pattern and Its Impact on VLC Channel Characteristics. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef]
- Peumans, P.; Bulović, V.; Forrest, S.R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 2000, 76, 3855–3857. [Google Scholar] [CrossRef]
- Cho, S.; Heo, C.J.; Lim, Y.; Oh, S.; Minami, D.; Yu, M.; Chun, H.; Yun, S.; Seo, H.; Fang, F.; et al. Small Molecule Based Organic Photo Signal Receiver for High-Speed Optical Wireless Communications. Adv. Sci. 2022, 9, 2203715. [Google Scholar] [CrossRef]
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef]
- Wang, Q.; Aziz, H. Degradation of Organic/Organic Interfaces in Organic Light-Emitting Devices due to Polaron–Exciton Interactions. ACS Appl. Mater. Interfaces 2013, 5, 8733–8739. [Google Scholar] [CrossRef]
- Apolo, J.A.; Ortega, B.; Almenar, V. Hybrid POF/VLC Links Based on a Single LED for Indoor Communications. Photonics 2021, 8, 254. [Google Scholar] [CrossRef]
- Salamandra, L.; La Notte, L.; Fazolo, C.; Di Natali, M.; Penna, S.; Mattiello, L.; Cinà, L.; Del Duca, R.; Reale, A. A comparative study of organic photodetectors based on P3HT and PTB7 polymers for visible light communication. Org. Electron. 2020, 81, 105666. [Google Scholar] [CrossRef]
- Dadabayev, R.; Malka, D. A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber. Opt. Laser Technol. 2019, 116, 239–245. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, H.; Zhou, R.; Zhang, G.; Chen, H.; Ma, D.; Tian, W.; Ban, X.; Jiang, W.; Sun, Y. Endowing deep-red BODIPY luminophors with enhanced aggregation-induced emission by installing miniature rotor of trifluoromethyl for solution-processed OLEDs. Org. Electron. 2022, 106, 106530. [Google Scholar] [CrossRef]
- Dwivedi, B.K.; Singh, V.D.; Kumar, Y.; Pandey, D.S. Photophysical properties of some novel tetraphenylimidazole derived BODIPY based fluorescent molecular rotors. Dalton Trans. 2020, 49, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Chi, N.; Yu, J.; Shang, H. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Opt. Express 2013, 21, 1203–1208. [Google Scholar] [CrossRef]
- Vithanage, D.A.; Manousiadis, P.P.; Sajjad, M.T.; Rajbhandari, S.; Chun, H.; Orofino, C.; Cortizo-Lacalle, D.; Kanibolotsky, A.L.; Faulkner, G.; Findlay, N.J.; et al. BODIPY star-shaped molecules as solid state colour converters for visible light communications. Appl. Phys. Lett. 2016, 109, 013302. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.T.; Manousiadis, P.P.; Orofino, C.; Kanibolotsky, A.L.; Findlay, N.J.; Rajbhandari, S.; Vithanage, D.A.; Chun, H.; Faulkner, G.E.; O’Brien, D.C.; et al. A saturated red color converter for visible light communication using a blend of star-shaped organic semiconductors. Appl. Phys. Lett. 2017, 110, 013302. [Google Scholar] [CrossRef] [Green Version]
- Yuce, H.; Guner, T.; Dartar, S.; Kaya, B.U.; Emrullahoglu, M.; Demir, M.M. BODIPY-based organic color conversion layers for WLEDs. Dye. Pigment. 2020, 173, 107932. [Google Scholar] [CrossRef]
- Merkushev, D.A.; Usoltsev, S.D.; Marfin, Y.S.; Pushkarev, A.P.; Volyniuk, D.; Grazulevicius, J.V.; Rumyantsev, E.V. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters. Mater. Chem. Phys. 2017, 187, 104–111. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, G.; Chen, H.; Zhou, R.; Zhang, G.; Tian, W.; Jiang, W.; Sun, Y. Creation of BODIPYs-based red OLEDs with high color purity via modulating the energy gap and restricting rotation of substituents. Dye. Pigment. 2022, 203, 110377. [Google Scholar] [CrossRef]
- Nakano, T.; Fujikawa, S. Aryl/Heteroaryl Substituted Boron-Difluoride Complexes Bearing 2-(Isoquinol-1-yl)pyrrole Ligands Exhibiting High Luminescence Efficiency with a Large Stokes Shift. J. Org. Chem. 2022, 87, 11708–11721. [Google Scholar] [CrossRef]
- Virgili, T.; Ganzer, L.; Botta, C.; Squeo, B.M.; Pasini, M. Asymmetric AZA-BODIPY with Optical Gain in the Near-Infrared Region. Molecules 2022, 27, 4538. [Google Scholar] [CrossRef]
- De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J.C.; Van Driessche, I.; Kovalenko, M.V.; Hens, Z. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2016, 10, 2071–2081. [Google Scholar] [CrossRef] [Green Version]
- Jancik Prochazkova, A.; Salinas, Y.; Yumusak, C.; Scharber, M.C.; Brüggemann, O.; Weiter, M.; Sariciftci, N.S.; Krajcovic, J.; Kovalenko, A. Controlling Quantum Confinement in Luminescent Perovskite Nanoparticles for Optoelectronic Devices by the Addition of Water. ACS Appl. Nano Mater. 2020, 3, 1242–1249. [Google Scholar] [CrossRef]
- Lee, C.; Shin, Y.; Villanueva-Antoli, A.; Das Adhikari, S.; Rodríguez-Pereira, J.; Macak, J.M.; Mesa, C.; Yoon, S.J.; Gualdrón-Reyes, A.F.; Mora Seró, I. Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX2 Purification. Chem. Mater. 2021, 33, 8745–8757. [Google Scholar] [CrossRef]
- Grisorio, R.; Di Clemente, M.E.; Fanizza, E.; Allegretta, I.; Altamura, D.; Striccoli, M.; Terzano, R.; Giannini, C.; Irimia-Vladu, M.; Suranna, G.P. Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 2019, 11, 986–999. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Heo, J.-M.; Park, G.-S.; Woo, S.-J.; Cho, C.; Yun, H.J.; Kim, D.-H.; Park, J.; Lee, S.-C.; Park, S.-H.; et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694. [Google Scholar] [CrossRef]
- Hao, M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J.; Yuan, Y.; Zarrabi, N.; Cheng, N.; Ghasemi, M.; Chen, P.; et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1–xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88. [Google Scholar] [CrossRef]
- Gualdrón-Reyes, A.F.; Masi, S.; Mora-Seró, I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 2021, 3, 499–511. [Google Scholar] [CrossRef]
- Bodnarchuk, M.I.; Boehme, S.C.; ten Brinck, S.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, D.; Kovalenko, M.V.; et al. Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Lett. 2018, 4, 63–74. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Bai, Y.; Sun, C.; Liu, H.; Wang, L.; Su, S.; Tian, K.; Zhang, Z.-H.; Bi, W. High color rendering index and stable white light emitting diodes fabricated from lead bromide perovskites. Appl. Phys. Lett. 2019, 115, 153103. [Google Scholar] [CrossRef]
- Su, Y.; Jing, Q.; Xu, Y.; Xing, X.; Lu, Z. Preventing Anion Exchange between Perovskite Nanocrystals by Confinement in Porous SiO2 Nanobeads. ACS Omega 2019, 4, 22209–22213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Sun, C.; Liu, H.; Shi, S.; Geng, C.; Wang, L.; Su, S.; Tian, K.; Zhang, Z.-h.; Bi, W. White light-emitting diodes based on carbon dots and Mn-doped CsPbCl3 nanocrystals. Nanotechnology 2019, 30, 245201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yuan, X.; Yang, J.; Li, Q.; Yang, X.; Fan, Y.; Li, H.; Liu, H.; Zhao, J. Cu doping-enhanced emission efficiency of Mn2+ in cesium lead halide perovskite nanocrystals for efficient white light-emitting diodes. J. Lumin. 2020, 227, 117586. [Google Scholar] [CrossRef]
- Shi, E.; Gao, Y.; Finkenauer, B.P.; Akriti; Coffey, A.H.; Dou, L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072. [Google Scholar] [CrossRef]
- Rad, R.R.; Gualdrón-Reyes, A.F.; Masi, S.; Ganji, B.A.; Taghavinia, N.; Gené-Marimon, S.; Palomares, E.; Mora-Seró, I. Tunable Carbon–CsPbI3 Quantum Dots for White LEDs. Adv. Opt. Mater. 2020, 9, 2001508. [Google Scholar] [CrossRef]
- Saeedi, M.; Ashjari, T.; Roghabadi, F.A.; Ahmadi, V. Efficient LED Light Converter based on Perovskite Nanocrystals for Visible Light Communication. In Proceedings of the 2020 3rd West Asian Symposium on Optical and Millimeter-Wave Wireless Communication (WASOWC), Tehran, Iran, 24–25 November 2020; pp. 1–4. [Google Scholar]
- Li, X.; Ma, W.; Liang, D.; Cai, W.; Zhao, S.; Zang, Z. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2022, 2, 646–654. [Google Scholar] [CrossRef]
- Ma, Z.; Li, X.; Zhang, C.; Turyanska, L.; Lin, S.; Xi, X.; Li, J.; Hu, T.; Wang, J.; Patanè, A.; et al. CsPb(Br/I)3 Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes. ACS Appl. Nano Mater. 2021, 4, 8383–8389. [Google Scholar] [CrossRef]
- Geng, Z.; Khan, F.N.; Guan, X.; Dong, Y. Advances in Visible Light Communication Technologies and Applications. Photonics 2022, 9, 893. [Google Scholar] [CrossRef]
- Yu, T.-C.; Huang, W.-T.; Lee, W.-B.; Chow, C.-W.; Chang, S.-W.; Kuo, H.-C. Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals 2021, 11, 1098. [Google Scholar] [CrossRef]
- Hussain, G.K.J.; Shruthe, M.; Rithanyaa, S.; Madasamy, S.R.; Velu, N.S. Visible Light Communication using Li-Fi. In Proceedings of the 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 21–22 April 2022; pp. 257–262. [Google Scholar]
- Shan, Q.; Wei, C.; Jiang, Y.; Song, J.; Zou, Y.; Xu, L.; Fang, T.; Wang, T.; Dong, Y.; Liu, J.; et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci. Appl. 2020, 9, 163. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent Trends in Underwater Visible Light Communication (UVLC) Systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Li, X.; Tong, Z.; Lyu, W.; Chen, X.; Yang, X.; Zhang, Y.; Liu, S.; Dai, Y.; Zhang, Z.; Guo, C.; et al. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Opt. Express 2022, 30, 1709–1722. [Google Scholar] [CrossRef]
- Xia, M.; Zhu, S.; Luo, J.; Xu, Y.; Tian, P.; Niu, G.; Tang, J. Ultrastable Perovskite Nanocrystals in All-Inorganic Transparent Matrix for High-Speed Underwater Wireless Optical Communication. Adv. Opt. Mater. 2021, 9, 2002239. [Google Scholar] [CrossRef]
- Rybczynski, P.; Smolarkiewicz-Wyczachowski, A.; Piskorz, J.; Bocian, S.; Ziegler-Borowska, M.; Kędziera, D.; Kaczmarek-Kędziera, A. Photochemical Properties and Stability of BODIPY Dyes. Int. J. Mol. Sci. 2021, 22, 6735. [Google Scholar] [CrossRef]
- Yin, Y.; Cheng, H.; Tian, W.; Wang, M.; Yin, Z.; Jin, S.; Bian, J. Self-Assembled δ-CsPbI3 Nanowires for Stable White Light Emission. ACS Applied Nano Materials 2022, 5, 18879–18884. [Google Scholar] [CrossRef]
Luminescent Material | PLQY (%) | Integrated System for VLC | Maximum Frequency Bandwidth (MHz) | Data Rate (Mbps) | Ref. |
---|---|---|---|---|---|
Al-DBA MOF | 12 | MOF-WLED | 3.6 | 3.6 | [27] |
Zr-based MOFs | - | MMM | 80 | 215 | [29] |
BCP and PTCBI | - | OPD | 430 | - | [58] |
Poly p-phenylene vinylene copolymer | 60 | OVLC | 200 | 1680 | [17] |
TBPe and BDAVBi | - | OLED | 245 | 1000 | [32] |
MDMO-PPV | - | PLED | 0.27 | 10 | [49] |
BBEHP-PPV and MEH-PPV | 25 | OVLC | 200 | 350 | [7] |
BODIPY (Y and T-based species) | 55–75 | OVLC | 39 | 100 | [4] |
Y-BODIPY | 49 | OVLC | 73 | 370 | [69] |
Dialkylfluorene/bicyclic 2,1,3-benzothiadiazole-BODIPY | 87–95 | OVLC | 55 | 207–218 | [72] |
CsPbBr3 PNCs | 70 | Inorganic µ-LED | 491 | 2000 | [8] |
PMMA-coated CsPbBr1.5I1.5 and CsPbI3 PNCs | - | Inorganic µ-LED | 1005–1100 | 1700 | [9] |
CsPbBr1.8I1.2 PNCs | 78 | Inorganic µ-LED | 85 | 300 | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, J.; Osorio-Roman, I.; Gualdrón-Reyes, A.F. Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems. Photonics 2023, 10, 659. https://doi.org/10.3390/photonics10060659
Martínez J, Osorio-Roman I, Gualdrón-Reyes AF. Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems. Photonics. 2023; 10(6):659. https://doi.org/10.3390/photonics10060659
Chicago/Turabian StyleMartínez, Javier, Igor Osorio-Roman, and Andrés F. Gualdrón-Reyes. 2023. "Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems" Photonics 10, no. 6: 659. https://doi.org/10.3390/photonics10060659
APA StyleMartínez, J., Osorio-Roman, I., & Gualdrón-Reyes, A. F. (2023). Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems. Photonics, 10(6), 659. https://doi.org/10.3390/photonics10060659