Design, Fabrication and Validation of Mixed Order Distributed Feed-Back Organic Diode Laser Cavity
Abstract
:1. Introduction
2. Laser Cavity Design
2.1. Optical Waveguide
2.1.1. Confinement Factor
2.1.2. Effective Index Contrasts
- Three ITO layer thicknesses : , , and .
- Three organic layer thicknesses : , , and .
- Three SiO2 layer thicknesses (, , and ). This choice is based on the capacity of the fabrication.
2.2. Micro-Cavity: Reflectance Study
2.2.1. Single DFB Mirror
- is the reflectance of the DFB mirror calculated with the large-index contrast (black solid line). The reflectance is close to unity from to , resulting in a full-width at half-maximum (FWHM) bandwidth of .
- is the reflectance calculated with the index contrast , corresponding to the optimum value listed in Table 3 (, and ) plotted in green. The calculated FWHM bandwidth is .
- For the index contrast (blue), the FWHM bandwidth is .
- For the index contrast , T and R are plotted in red in Figure 7. For this value, and in the case where , the FWHM bandwidths of the reflectance can be calculated but the corresponding peak values hardly exceed 0.6, which indicates that no forbidden bandgap exists.
2.2.2. Cavities Consisting of DFB Mirrors and Defects in between
- Cavities are made of a left and a right mirror with a defect in between them.
- Mirrors are made of N pairs of quarter-wavelength layers alternating between high-index () and low-index (), where is the central wavelength under consideration. Each mirror starts and ends with high-index layers (), and thus is made of 2N + 1 layers. This is particularly important when the number N of pairs is small (<10).
- The defect is made of high index () and low index (), with a total optical thickness that is an odd number of half wavelengths such that after one round-trip the accumulated phase is a multiple of the wavelength, resulting in constructive interference. Because each mirror starts and ends with high-index layers, the defect must start and end with a low-index layer (). It is composed of M pairs of alternating half-wavelength thick high-index () and low-index () layers. The total optical thickness equals . This constitutes a second-order grating “DFB2”. As mentioned before, the role of the second-order grating is to provide a partial outcoupling of light in the direction perpendicular to the plane of the grating at the resonance wavelength. This offers the possibility to measure the light intensity of the device more easily.
2.2.3. Quality Factor of DFB Cavities
3. Fabrication
Samples
4. Validation: Laser Properties of DFB Patterns under Optical Pumping
4.1. Experimental Setup
4.2. Experimental Results
- the effective indices that depend on the effective thickness of the different layers;
- the width of the grating lines that depends on the geometry design and the dose;
- the electroluminescence peak of the organic material that varies with the effective concentration of the dopant in the matrix [21]
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, K.; Manousiadis, P.P.; Bian, R.; Chen, Z.; Murawski, C.; Gather, M.C.; Haas, H.; Turnbull, G.A.; Samuel, I.D.W. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 2020, 11, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzner, R.; Mena-Osteritz, E.; Mishra, A.; Schulz, G.; Reinold, E.; Weil, M.; Körner, C.; Ziehlke, H.; Elschner, C.; Leo, K.; et al. Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. J. Am. Chem. Soc. 2012, 134, 11064–11067. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Leem, D.-S.; Sul, S.; Park, K.-B.; Lim, S.-J.; Han, H.; Kim, K.-S.; Jin, Y.W.; Lee, S.; Park, S.Y. A high-performance greensensitive organic photodiode comprising a bulk heterojunction of dimethyl-quinacridone and dicyanovinyl terthiophene. J. Mater. Chem. C 2013, 1, 2666. [Google Scholar] [CrossRef]
- Herrnsdorf, J.; Guilhabert, B.; Chen, Y.; Kanibolotsky, A.L.; Mackintosh, A.R.; Pethrick, R.A.; Skabara, P.J.; Gu, E.; Laurand, N.; Dawson, M.D. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Opt. Express 2010, 18, 25535–25545. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Turnbull, G.A.; Samuel, D.W. Sensitive Explosive Vapor Detection with Polyfluorene Lasers. Adv. Funct. Mater. 2010, 20, 2093–2097. [Google Scholar] [CrossRef]
- OLED Microdisplays: Technology and Applications; Templier, F. (Ed.) John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 9781848215757. [Google Scholar] [CrossRef]
- Templier, F. GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems. J. Soc. Inf. Disp. 2016, 24, 669–675. [Google Scholar] [CrossRef]
- Pope, M.; Swenberg, C.E. Electronic Processes in Organic Crystals and Polymers; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Karnutsch, C.; Pflumm, C.; Heliotis, G.; Demello, J.C.; Bradley, D.D.; Wang, J.; Weimann, T.; Haug, V.; Gärtner, C.; Lemmer, U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 2007, 90, 131104. [Google Scholar] [CrossRef]
- Karnutsch, C.; Gýrtner, C.; Haug, V.; Lemmer, U.; Farrell, T.; Nehls, B.S.; Scherf, U.; Wang, J.; Weimann, T.; Heliotis, G.; et al. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Appl. Phys. Lett. 2006, 89, 201108. [Google Scholar] [CrossRef]
- Namdas, E.B.; Tong, M.; Ledochowitsch, P.; Mednick, S.R.; Yuen, J.D.; Moses, D.; Heeger, A.J. Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers. Adv. Mater. 2009, 21, 799–802. [Google Scholar] [CrossRef]
- Hirade, M.; Nakanotani, H.; Hattori, R.; Ikeda, A.; Yahiro, M.; Adachi, C. Low-Threshold Blue Emission from First-Order Organic DFB Laser Using 2,7-bis[4-(N-carbazole)phenylvinyl]-9,9′-Spirobifluorene as Active Gain Medium. Mol. Cryst. Liq. Cryst. 2009, 504, 1–8. [Google Scholar] [CrossRef]
- Xia, R.; Lai, W.Y.; Levermore, P.A.; Huang, W.; Bradley, D.D. Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms. Adv. Funct. Mater. 2009, 19, 2844–2850. [Google Scholar] [CrossRef]
- Sandanayaka, A.S.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W.J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.C.; Adachi, C. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 2019, 12, 061010. [Google Scholar] [CrossRef] [Green Version]
- Sandanayaka, A.S.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W.J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.C.; Adachi, C. Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode. Appl. Phys. Lett. 2005, 86, 221102. [Google Scholar] [CrossRef]
- Available online: htttps://www.computational-photonics.eu (accessed on 10 February 2020).
- Coens, A.; Chakaroun, M.; Fischer, A.P.A.; Lee, M.W.; Boudrioua, A.; Geffroy, B.; Vemuri, G. Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity. Opt. Express 2012, 20, 29252–29259. [Google Scholar] [CrossRef] [PubMed]
- Brütting, W.; Berleb, S.; Mückl, A.G. Device Physics of Organix Light-Emitting Diodes Based on Molecular Materials. Org. Electron. 2001, 2, 1–36. [Google Scholar] [CrossRef]
- Chakaroun, M.; Coens, A.; Fabre, N.; Gourdon, F.; Solard, J.; Fischer, A.; Boudrioua, A.; Lee, C.C. Optimal design of a microcavity organic laser device under electrical pumping. Opt. Express 2011, 19, 493. [Google Scholar] [CrossRef] [PubMed]
- Birch, D.J.S.; Hungerford, G.; Imhof, R.E.; Holmes, A.S. The fluorescence properties of DCM. Chem. Phys. Lett. 1991, 178, 177–184. [Google Scholar] [CrossRef]
- Al-Kaysi, R.O.; Ahn, T.S.; Müller, A.M.; Bardeen, C.J. The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids. Phys. Chem. Chem. Phys. 2006, 8, 3453–3459. [Google Scholar] [CrossRef]
- Ouirimi, A.; Chime, A.C.; Loganathan, N.; Chakaroun, M.; Fischer, A.P.A.; Lenstra, D. Threshold estimation of an organic laser diode using a rate-equation model validated experimentally with a microcavity OLED submitted to nanosecond electrical pulses. Org. Electron. 2021, 97, 106190. [Google Scholar] [CrossRef]
- Lenstra, D.; Fischer, A.P.A.; Ouirimi, A.; Chime, A.C.; Loganathan, N.; Chakaroun, M. Organic Diode Laser Dynamics: Rate-Equation Model, Reabsorption, Validation and Threshold Predictions. Photonics 2021, 8, 279. [Google Scholar] [CrossRef]
Dye laser | Organic solid-state laser | Organic laser diode | Conventional laser diode |
Liquid state | Amorphous thin film (Solid state) | Amorphous thin film (Solid state) | Crystalline thin film |
Optically pumped | Optically pumped | Electrical excitation | Electrical excitation |
No heterogeneous integration | Relatively easy heterogenous integration thanks to the amorphous state | Easy heterogenous integration including on silicon thanks to the amorphous state Environmentally friendly fabrication process—Short fabrication time Fabrication steps ~30 | Difficult heterogenous integration due to lattice mismatch Often toxic materials Long fabrication time Fabrication steps ~300 |
Macroscopic device | Microscopic device | Microscopic device | |
Frenkel excitons (binding energy ~1 eV, radius 1 nm) [8] | Frenkel excitons (binding energy ~1 eV, radius 1 nm) [8] | Polarons and Frenkel excitons (binding energy ~1 eV, radius 1 nm) [8] | Wanier excitons Irrelevant at room temperature |
ITO Thickness (nm) | Organic Thickness (nm) | ||||
---|---|---|---|---|---|
TE0 | TM0 | TE1 | TM1 | ||
50 | 200 | 0.565 | 0.487 | - | - |
125 | 0.385 | 0.19 | - | - | |
100 | 0.306 | 0.088 | - | - | |
140 | 200 | 0.339 | 0.38 | - | - |
125 | 0.247 | 0.226 | - | - | |
100 | 0.207 | 0.166 | - | - | |
340 | 200 | 0.097 | 0.106 | 0.367 | 0.334 |
125 | 0.073 | 0.065 | 0.231 | 0.163 | |
100 | 0.061 | 0.049 | 0.183 | 0.107 |
ITO Thickness (nm) | Organic Thickness (nm) | |||
---|---|---|---|---|
SiO2 Thickness (nm) | ||||
50 | 100 | 300 | ||
50 | 100 | 0.0107 | 0.017 | 0.029 |
125 | 0.016 | 0.026 | 0.045 | |
200 | 0.021 | 0.035 | 0.061 | |
140 | 100 | 0.016 | 0.024 | 0.031 |
125 | 0.021 | 0.031 | 0.040 | |
200 | 0.027 | 0.041 | 0.057 | |
340 | 100 | 0.006 | 0.008 | 0.009 |
125 | 0.007 | 0.009 | 0.011 | |
200 | 0.009 | 0.012 | 0.014 |
Best Optimum | Optimum | |
---|---|---|
ITO thickness (nm) | 50 | 140 |
Organic thickness (nm) | 200 | 200 |
SiO2 thickness (nm) | 300 | 300 |
(nm) | 98 | 92 |
(nm) | 102 | 95 |
N | 200 pairs + 1 | 200 pairs + 1 |
M | 10 pairs + 1 | 10 pairs + 1 |
Nominal Bragg Wavelength λBragg (nm) | l1H (nm) | l1l (nm) | l2H (nm) | l2l (nm) | Length of Section 2 of the Cavity (µm) |
---|---|---|---|---|---|
622 | 91 | 107 | 183 | 214 | 4.085 |
642 | 94 | 111 | 189 | 221 | 4.150 |
662 | 97 | 114 | 195 | 228 | 4.300 |
682 | 100 | 118 | 201 | 235 | 4.421 |
702 | 103 | 121 | 206 | 242 | 4.523 |
Pump Energy (µJ/cm2) | Resonance Wavelength (nm) | FWHM (nm) | |
---|---|---|---|
167 µJ/cm2 (Cyan) | 627.2 | 0.12 | 5226 |
627.5 | 0.13 | 4826 | |
269 µJ/cm2 (Magenta) | 627.0 | 0.17 | 3688 |
627.2 | 0.14 | 4480 | |
477 µJ/cm2 (Yellow) | 626.9 | 0.17 | 3687 |
Nominal Wavelength (nm) | Dose (µC/cm2) | Width of SiO2 Line (nm) | Width of Spacing (nm) | Observed Peak Wavelength (nm) | ||
---|---|---|---|---|---|---|
Without cavity | 607 | |||||
622 | 103 | 90 | 97 | 615 | ||
642 | 105 | 109 | 92 | 613.6 | ||
662 | 600 (case 1) | 115 | 93 | 101 | 624.1 (lasing) | |
700 (case 2) | 119 | 91 | 102 | 626.5 (lasing) | ||
682 | 700 (case 3) | 116 | 129 | 95 | 102 | 643.5 (lasing) |
800 (case 4) | 138 | 160 | 60 | 90 | 643.5 (lasing) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouirimi, A.; Chime, A.C.; Loganathan, N.; Chakaroun, M.; Lenstra, D.; Fischer, A.P.A. Design, Fabrication and Validation of Mixed Order Distributed Feed-Back Organic Diode Laser Cavity. Photonics 2023, 10, 670. https://doi.org/10.3390/photonics10060670
Ouirimi A, Chime AC, Loganathan N, Chakaroun M, Lenstra D, Fischer APA. Design, Fabrication and Validation of Mixed Order Distributed Feed-Back Organic Diode Laser Cavity. Photonics. 2023; 10(6):670. https://doi.org/10.3390/photonics10060670
Chicago/Turabian StyleOuirimi, Amani, Alex Chamberlain Chime, Nixson Loganathan, Mahmoud Chakaroun, Daan Lenstra, and Alexis P. A. Fischer. 2023. "Design, Fabrication and Validation of Mixed Order Distributed Feed-Back Organic Diode Laser Cavity" Photonics 10, no. 6: 670. https://doi.org/10.3390/photonics10060670
APA StyleOuirimi, A., Chime, A. C., Loganathan, N., Chakaroun, M., Lenstra, D., & Fischer, A. P. A. (2023). Design, Fabrication and Validation of Mixed Order Distributed Feed-Back Organic Diode Laser Cavity. Photonics, 10(6), 670. https://doi.org/10.3390/photonics10060670